Skip to content

idra-lab/safe-mpc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Safe-MPC

This repo contains algorithms for Model Predictive Control, ensuring safety constraints and recursive feasibility.

Installation

  • Clone the repository
    git clone https://github.com/idra-lab/safe-mpc.git
  • Install the requirements
    pip install -r requirements.txt
  • Inside the root folder, download the zip (containing the Neural Network weights) from here, rename it as nn_models.zip and unzip it.
  • Follow the instructions to install CasADi, Acados and Pytorch.

Usage

Run the script main.py inside the scripts folder. One can consult the help for the available options:

cd scripts
python3 main.py --help

For example:

  • find the initial static configurations of the manipulator on which we run the tests
python3 main.py -i
  • obtain the initial guess (to warm-start the MPC), for a given controller
python3 main.py -g -c=receding
  • run the MPC
python3 main.py --rti -c=receding

References

@misc{lunardi2023recedingconstraint,
      title={Receding-Constraint Model Predictive Control using a Learned Approximate Control-Invariant Set}, 
      author={Gianni Lunardi and Asia La Rocca and Matteo Saveriano and Andrea Del Prete},
      year={2023},
      eprint={2309.11124},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

About

Safe MPC using Learned Viability

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages