This is our project for the course Modern Data Analytics, where our objective is to develop an application that predicts the noise level in Naamsestraat, Leuven. The prediction model will be based on forecast weather and air quality data. By utilising machine learning models, we aim to provide valuable insights into the noise levels in the city, enabling residents and authorities to better understand and manage noise pollution.
Jeh Mattummal
Sven Nelles
Jef Winant
Yixin Mei
Duc Tien Do
Anh Phuong Dinh
- Air quality data:
- Historical: scraped using OpenWeatherMap API
- Forecast: scraped using Open-Meteo forecast air quality API
- Weather data:
- Historical: scraped using Open-Meteo historical weather API with query
- Forecast: scraped using Open-Meteo forecast weather API with query
📦
├─ README.md
├─ __pycache__
├─ conda_requirements.txt
├─ pip_requirements.txt
├─ app
│ ├─ .streamlit
│ │ └─ config.toml
│ ├─ __pycache__
│ │ ├─ historical_noise.cpython-39.pyc
│ │ ├─ prediction_noise.cpython-39.pyc
│ │ └─ weather.cpython-39.pyc
│ ├─ historical_noise.py
│ ├─ main.py
│ ├─ prediction_noise.py
│ ├─ requirements.txt
│ ├─ weather.py
│ └─ woise-logo.png
├─ data
│ ├─ file40
│ ├─ file41.csv
│ ├─ file41
│ ├─ processed_air_quality_data.csv
│ ├─ processed_file40_data.csv
│ ├─ processed_file41_data.csv
│ ├─ processed_file42_data.csv
│ └─ processed_weather_data_leuven.csv
├─ model
│ ├─ model_noise_level_file40
│ ├─ model_noise_level_file42
│ └─ noise_types
└─ notebook
├─ 1_EDA.ipynb
├─ 2_scrape_and_process_data.ipynb
├─ 3_model_predict_noise_level_file40.ipynb
├─ 4_model_predict_noise_level_file42.ipynb
├─ 5_model_predict_noise_types.ipynb
└─ 6_test_predictions.ipynb
To set up the project environment, follow these instructions:
Clone the project repository
git clone https://github.com/aphdinh/MDA_KUL.git
Install the dependencies
python -m venv mda_chad
source mda_chad/bin/activate # Windows: \venv\scripts\activate
pip install -r pip_requirements.txt
Navigate into the "app" folder using the cd command:
cd app
then run the app locally:
streamlit run main.py
The app has also been deployed here.