Skip to content

A project for the course Modern Data Analytics inspecting and predicting noise levels in Leuven

Notifications You must be signed in to change notification settings

aphdinh/MDA_KUL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Modern Data Analytics - KU Leuven

Flag

Welcome to team Chad 👋

This is our project for the course Modern Data Analytics, where our objective is to develop an application that predicts the noise level in Naamsestraat, Leuven. The prediction model will be based on forecast weather and air quality data. By utilising machine learning models, we aim to provide valuable insights into the noise levels in the city, enabling residents and authorities to better understand and manage noise pollution.

Streamlit App

$\mathbf{Members:}$

Jeh Mattummal $\mathbf{(r0861984)}$

Sven Nelles $\mathbf{(r0874870)}$

Jef Winant $\mathbf{(r0931958)}$

Yixin Mei $\mathbf{(r0911558)}$

Duc Tien Do $\mathbf{(r0916083)}$

Anh Phuong Dinh $\mathbf{(r0913033)}$

🌦 Data collection

📚 File organization

📦 
├─ README.md
├─ __pycache__
├─ conda_requirements.txt
├─ pip_requirements.txt 
├─ app
│  ├─ .streamlit
│  │  └─ config.toml
│  ├─ __pycache__
│  │  ├─ historical_noise.cpython-39.pyc
│  │  ├─ prediction_noise.cpython-39.pyc
│  │  └─ weather.cpython-39.pyc
│  ├─ historical_noise.py
│  ├─ main.py
│  ├─ prediction_noise.py
│  ├─ requirements.txt
│  ├─ weather.py
│  └─ woise-logo.png
├─ data
│  ├─ file40
│  ├─ file41.csv
│  ├─ file41
│  ├─ processed_air_quality_data.csv
│  ├─ processed_file40_data.csv
│  ├─ processed_file41_data.csv
│  ├─ processed_file42_data.csv
│  └─ processed_weather_data_leuven.csv
├─ model
│  ├─ model_noise_level_file40
│  ├─ model_noise_level_file42
│  └─ noise_types
└─ notebook
   ├─ 1_EDA.ipynb
   ├─ 2_scrape_and_process_data.ipynb
   ├─ 3_model_predict_noise_level_file40.ipynb
   ├─ 4_model_predict_noise_level_file42.ipynb
   ├─ 5_model_predict_noise_types.ipynb
   └─ 6_test_predictions.ipynb

⚙️ Installation guide

To set up the project environment, follow these instructions:

Clone the project repository

git clone https://github.com/aphdinh/MDA_KUL.git

Install the dependencies

python -m venv mda_chad
source mda_chad/bin/activate  # Windows: \venv\scripts\activate
pip install -r pip_requirements.txt

Navigate into the "app" folder using the cd command:

cd app

then run the app locally:

streamlit run main.py

The app has also been deployed here.

About

A project for the course Modern Data Analytics inspecting and predicting noise levels in Leuven

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published