Skip to content

Latest commit

 

History

History
106 lines (81 loc) · 4.16 KB

README.md

File metadata and controls

106 lines (81 loc) · 4.16 KB

Modern Data Analytics - KU Leuven

Flag

Welcome to team Chad 👋

This is our project for the course Modern Data Analytics, where our objective is to develop an application that predicts the noise level in Naamsestraat, Leuven. The prediction model will be based on forecast weather and air quality data. By utilising machine learning models, we aim to provide valuable insights into the noise levels in the city, enabling residents and authorities to better understand and manage noise pollution.

Streamlit App

$\mathbf{Members:}$

Jeh Mattummal $\mathbf{(r0861984)}$

Sven Nelles $\mathbf{(r0874870)}$

Jef Winant $\mathbf{(r0931958)}$

Yixin Mei $\mathbf{(r0911558)}$

Duc Tien Do $\mathbf{(r0916083)}$

Anh Phuong Dinh $\mathbf{(r0913033)}$

🌦 Data collection

📚 File organization

📦 
├─ README.md
├─ __pycache__
├─ conda_requirements.txt
├─ pip_requirements.txt 
├─ app
│  ├─ .streamlit
│  │  └─ config.toml
│  ├─ __pycache__
│  │  ├─ historical_noise.cpython-39.pyc
│  │  ├─ prediction_noise.cpython-39.pyc
│  │  └─ weather.cpython-39.pyc
│  ├─ historical_noise.py
│  ├─ main.py
│  ├─ prediction_noise.py
│  ├─ requirements.txt
│  ├─ weather.py
│  └─ woise-logo.png
├─ data
│  ├─ file40
│  ├─ file41.csv
│  ├─ file41
│  ├─ processed_air_quality_data.csv
│  ├─ processed_file40_data.csv
│  ├─ processed_file41_data.csv
│  ├─ processed_file42_data.csv
│  └─ processed_weather_data_leuven.csv
├─ model
│  ├─ model_noise_level_file40
│  ├─ model_noise_level_file42
│  └─ noise_types
└─ notebook
   ├─ 1_EDA.ipynb
   ├─ 2_scrape_and_process_data.ipynb
   ├─ 3_model_predict_noise_level_file40.ipynb
   ├─ 4_model_predict_noise_level_file42.ipynb
   ├─ 5_model_predict_noise_types.ipynb
   └─ 6_test_predictions.ipynb

⚙️ Installation guide

To set up the project environment, follow these instructions:

Clone the project repository

git clone https://github.com/aphdinh/MDA_KUL.git

Install the dependencies

python -m venv mda_chad
source mda_chad/bin/activate  # Windows: \venv\scripts\activate
pip install -r pip_requirements.txt

Navigate into the "app" folder using the cd command:

cd app

then run the app locally:

streamlit run main.py

The app has also been deployed here.