forked from mfalcon/taxiornot
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
264 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
from __future__ import division,print_function | ||
import math, os, json, sys, re | ||
import pickle | ||
from glob import glob | ||
import numpy as np | ||
from matplotlib import pyplot as plt | ||
from operator import itemgetter, attrgetter, methodcaller | ||
from collections import OrderedDict | ||
import itertools | ||
from itertools import chain | ||
|
||
import pandas as pd | ||
import PIL | ||
from PIL import Image | ||
from numpy.random import random, permutation, randn, normal, uniform, choice | ||
from numpy import newaxis | ||
import scipy | ||
from scipy import misc, ndimage | ||
from scipy.ndimage.interpolation import zoom | ||
from scipy.ndimage import imread | ||
from sklearn.metrics import confusion_matrix | ||
import bcolz | ||
from sklearn.preprocessing import OneHotEncoder | ||
from sklearn.manifold import TSNE | ||
|
||
from IPython.lib.display import FileLink | ||
''' | ||
import theano | ||
from theano import shared, tensor as T | ||
from theano.tensor.nnet import conv2d, nnet | ||
from theano.tensor.signal import pool | ||
''' | ||
import keras | ||
from keras import backend as K | ||
from keras.utils.data_utils import get_file | ||
from keras.utils import np_utils | ||
from keras.utils.np_utils import to_categorical | ||
from keras.models import Sequential, Model | ||
from keras.layers import Input, Embedding, Reshape, merge, LSTM, Bidirectional | ||
from keras.layers import TimeDistributed, Activation, SimpleRNN, GRU | ||
from keras.layers.core import Flatten, Dense, Dropout, Lambda | ||
from keras.regularizers import l2, activity_l2, l1, activity_l1 | ||
from keras.layers.normalization import BatchNormalization | ||
from keras.optimizers import SGD, RMSprop, Adam | ||
from keras.utils.layer_utils import layer_from_config | ||
from keras.metrics import categorical_crossentropy, categorical_accuracy | ||
from keras.layers.convolutional import * | ||
from keras.preprocessing import image, sequence | ||
from keras.preprocessing.text import Tokenizer | ||
|
||
from vgg16 import * | ||
from vgg16bn import * | ||
np.set_printoptions(precision=4, linewidth=100) | ||
|
||
|
||
to_bw = np.array([0.299, 0.587, 0.114]) | ||
|
||
def gray(img): | ||
if K.image_dim_ordering() == 'tf': | ||
return np.rollaxis(img, 0, 1).dot(to_bw) | ||
else: | ||
return np.rollaxis(img, 0, 3).dot(to_bw) | ||
|
||
def to_plot(img): | ||
if K.image_dim_ordering() == 'tf': | ||
return np.rollaxis(img, 0, 1).astype(np.uint8) | ||
else: | ||
return np.rollaxis(img, 0, 3).astype(np.uint8) | ||
|
||
def plot(img): | ||
plt.imshow(to_plot(img)) | ||
|
||
|
||
def floor(x): | ||
return int(math.floor(x)) | ||
def ceil(x): | ||
return int(math.ceil(x)) | ||
|
||
def plots(ims, figsize=(12,6), rows=1, interp=False, titles=None): | ||
if type(ims[0]) is np.ndarray: | ||
ims = np.array(ims).astype(np.uint8) | ||
if (ims.shape[-1] != 3): | ||
ims = ims.transpose((0,2,3,1)) | ||
f = plt.figure(figsize=figsize) | ||
cols = len(ims)//rows if len(ims) % 2 == 0 else len(ims)//rows + 1 | ||
for i in range(len(ims)): | ||
sp = f.add_subplot(rows, cols, i+1) | ||
sp.axis('Off') | ||
if titles is not None: | ||
sp.set_title(titles[i], fontsize=16) | ||
plt.imshow(ims[i], interpolation=None if interp else 'none') | ||
|
||
|
||
def do_clip(arr, mx): | ||
clipped = np.clip(arr, (1-mx)/1, mx) | ||
return clipped/clipped.sum(axis=1)[:, np.newaxis] | ||
|
||
|
||
def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=4, class_mode='categorical', | ||
target_size=(224,224)): | ||
return gen.flow_from_directory(dirname, target_size=target_size, | ||
class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) | ||
|
||
|
||
def onehot(x): | ||
return to_categorical(x) | ||
|
||
|
||
def wrap_config(layer): | ||
return {'class_name': layer.__class__.__name__, 'config': layer.get_config()} | ||
|
||
|
||
def copy_layer(layer): return layer_from_config(wrap_config(layer)) | ||
|
||
|
||
def copy_layers(layers): return [copy_layer(layer) for layer in layers] | ||
|
||
|
||
def copy_weights(from_layers, to_layers): | ||
for from_layer,to_layer in zip(from_layers, to_layers): | ||
to_layer.set_weights(from_layer.get_weights()) | ||
|
||
|
||
def copy_model(m): | ||
res = Sequential(copy_layers(m.layers)) | ||
copy_weights(m.layers, res.layers) | ||
return res | ||
|
||
|
||
def insert_layer(model, new_layer, index): | ||
res = Sequential() | ||
for i,layer in enumerate(model.layers): | ||
if i==index: res.add(new_layer) | ||
copied = layer_from_config(wrap_config(layer)) | ||
res.add(copied) | ||
copied.set_weights(layer.get_weights()) | ||
return res | ||
|
||
|
||
def adjust_dropout(weights, prev_p, new_p): | ||
scal = (1-prev_p)/(1-new_p) | ||
return [o*scal for o in weights] | ||
|
||
|
||
def get_data(path, target_size=(224,224)): | ||
batches = get_batches(path, shuffle=False, batch_size=1, class_mode=None, target_size=target_size) | ||
return np.concatenate([batches.next() for i in range(batches.nb_sample)]) | ||
|
||
|
||
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): | ||
""" | ||
This function prints and plots the confusion matrix. | ||
Normalization can be applied by setting `normalize=True`. | ||
(This function is copied from the scikit docs.) | ||
""" | ||
plt.figure() | ||
plt.imshow(cm, interpolation='nearest', cmap=cmap) | ||
plt.title(title) | ||
plt.colorbar() | ||
tick_marks = np.arange(len(classes)) | ||
plt.xticks(tick_marks, classes, rotation=45) | ||
plt.yticks(tick_marks, classes) | ||
|
||
if normalize: | ||
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | ||
print(cm) | ||
thresh = cm.max() / 2. | ||
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | ||
plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") | ||
|
||
plt.tight_layout() | ||
plt.ylabel('True label') | ||
plt.xlabel('Predicted label') | ||
|
||
|
||
def save_array(fname, arr): | ||
c=bcolz.carray(arr, rootdir=fname, mode='w') | ||
c.flush() | ||
|
||
|
||
def load_array(fname): | ||
return bcolz.open(fname)[:] | ||
|
||
|
||
def mk_size(img, r2c): | ||
r,c,_ = img.shape | ||
curr_r2c = r/c | ||
new_r, new_c = r,c | ||
if r2c>curr_r2c: | ||
new_r = floor(c*r2c) | ||
else: | ||
new_c = floor(r/r2c) | ||
arr = np.zeros((new_r, new_c, 3), dtype=np.float32) | ||
r2=(new_r-r)//2 | ||
c2=(new_c-c)//2 | ||
arr[floor(r2):floor(r2)+r,floor(c2):floor(c2)+c] = img | ||
return arr | ||
|
||
|
||
def mk_square(img): | ||
x,y,_ = img.shape | ||
maxs = max(img.shape[:2]) | ||
y2=(maxs-y)//2 | ||
x2=(maxs-x)//2 | ||
arr = np.zeros((maxs,maxs,3), dtype=np.float32) | ||
arr[floor(x2):floor(x2)+x,floor(y2):floor(y2)+y] = img | ||
return arr | ||
|
||
|
||
def vgg_ft(out_dim): | ||
vgg = Vgg16() | ||
vgg.ft(out_dim) | ||
model = vgg.model | ||
return model | ||
|
||
def vgg_ft_bn(out_dim): | ||
vgg = Vgg16BN() | ||
vgg.ft(out_dim) | ||
model = vgg.model | ||
return model | ||
|
||
|
||
def get_classes(path): | ||
batches = get_batches(path+'train', shuffle=False, batch_size=1) | ||
val_batches = get_batches(path+'valid', shuffle=False, batch_size=1) | ||
test_batches = get_batches(path+'test', shuffle=False, batch_size=1) | ||
return (val_batches.classes, batches.classes, onehot(val_batches.classes), onehot(batches.classes), | ||
val_batches.filenames, batches.filenames, test_batches.filenames) | ||
|
||
|
||
def split_at(model, layer_type): | ||
layers = model.layers | ||
layer_idx = [index for index,layer in enumerate(layers) | ||
if type(layer) is layer_type][-1] | ||
return layers[:layer_idx+1], layers[layer_idx+1:] | ||
|
||
|
||
class MixIterator(object): | ||
def __init__(self, iters): | ||
self.iters = iters | ||
self.multi = type(iters) is list | ||
if self.multi: | ||
self.N = sum([it[0].N for it in self.iters]) | ||
else: | ||
self.N = sum([it.N for it in self.iters]) | ||
|
||
def reset(self): | ||
for it in self.iters: it.reset() | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
def next(self, *args, **kwargs): | ||
if self.multi: | ||
nexts = [[next(it) for it in o] for o in self.iters] | ||
n0 = np.concatenate([n[0] for n in nexts]) | ||
n1 = np.concatenate([n[1] for n in nexts]) | ||
return (n0, n1) | ||
else: | ||
nexts = [next(it) for it in self.iters] | ||
n0 = np.concatenate([n[0] for n in nexts]) | ||
n1 = np.concatenate([n[1] for n in nexts]) | ||
return (n0, n1) | ||
|