forked from mfalcon/taxiornot
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
518 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
#!/bin/bash | ||
|
||
while true | ||
do | ||
/home/pi/webcam.sh | ||
sleep 5 | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
#!/bin/bash | ||
|
||
DATE=$(date +”%Y-%m-%d_%H%M%S”) | ||
|
||
fswebcam -r 640×480 –no-banner /home/pi/webcam/$DATE.jpg |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Taxiornot" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Basic setup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Importamos la clase vgg16 y luego la instanciamos" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Using TensorFlow backend.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from vgg16 import Vgg16" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"vgg = Vgg16()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"batch_size=4" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"path = \"data/tachornot/\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Found 236 images belonging to 2 classes.\n", | ||
"Found 62 images belonging to 2 classes.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"batches = vgg.get_batches(path+'train', batch_size=batch_size)\n", | ||
"val_batches = vgg.get_batches(path+'valid', batch_size=batch_size)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Calling *finetune()* modifies the model such that it will be trained based on the data in the batches provided - in this case, to predict either 'dog' or 'cat'." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"vgg.finetune(batches)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Finally, we *fit()* the parameters of the model using the training data, reporting the accuracy on the validation set after every epoch. (An *epoch* is one full pass through the training data.)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Epoch 1/10\n", | ||
"236/236 [==============================] - 4s - loss: 0.9080 - acc: 0.7500 - val_loss: 0.2648 - val_acc: 0.8710\n", | ||
"Epoch 2/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.4089 - acc: 0.8475 - val_loss: 0.1603 - val_acc: 0.9516\n", | ||
"Epoch 3/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.2968 - acc: 0.9068 - val_loss: 0.2070 - val_acc: 0.9355\n", | ||
"Epoch 4/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.3114 - acc: 0.8983 - val_loss: 0.2002 - val_acc: 0.9516\n", | ||
"Epoch 5/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.1200 - acc: 0.9449 - val_loss: 0.0704 - val_acc: 0.9839\n", | ||
"Epoch 6/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.2147 - acc: 0.9237 - val_loss: 0.0279 - val_acc: 1.0000\n", | ||
"Epoch 7/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.1917 - acc: 0.9364 - val_loss: 0.0688 - val_acc: 0.9516\n", | ||
"Epoch 8/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.1763 - acc: 0.9449 - val_loss: 0.0359 - val_acc: 0.9839\n", | ||
"Epoch 9/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.2478 - acc: 0.9153 - val_loss: 0.0245 - val_acc: 1.0000\n", | ||
"Epoch 10/10\n", | ||
"236/236 [==============================] - 3s - loss: 0.1889 - acc: 0.9364 - val_loss: 0.0390 - val_acc: 0.9839\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"vgg.fit(batches, val_batches, nb_epoch=10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"imgs,labels = next(val_batches)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"ename": "NameError", | ||
"evalue": "name 'plots' is not defined", | ||
"output_type": "error", | ||
"traceback": [ | ||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | ||
"\u001b[0;32m<ipython-input-9-ecc52a7a9690>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtitles\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | ||
"\u001b[0;31mNameError\u001b[0m: name 'plots' is not defined" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"plots(imgs, titles=labels)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.13" | ||
}, | ||
"nav_menu": {}, | ||
"nbpresent": { | ||
"slides": { | ||
"28b43202-5690-4169-9aca-6b9dabfeb3ec": { | ||
"id": "28b43202-5690-4169-9aca-6b9dabfeb3ec", | ||
"prev": null, | ||
"regions": { | ||
"3bba644a-cf4d-4a49-9fbd-e2554428cf9f": { | ||
"attrs": { | ||
"height": 0.8, | ||
"width": 0.8, | ||
"x": 0.1, | ||
"y": 0.1 | ||
}, | ||
"content": { | ||
"cell": "f3d3a388-7e2a-4151-9b50-c20498fceacc", | ||
"part": "whole" | ||
}, | ||
"id": "3bba644a-cf4d-4a49-9fbd-e2554428cf9f" | ||
} | ||
} | ||
}, | ||
"8104def2-4b68-44a0-8f1b-b03bf3b2a079": { | ||
"id": "8104def2-4b68-44a0-8f1b-b03bf3b2a079", | ||
"prev": "28b43202-5690-4169-9aca-6b9dabfeb3ec", | ||
"regions": { | ||
"7dded777-1ddf-4100-99ae-25cf1c15b575": { | ||
"attrs": { | ||
"height": 0.8, | ||
"width": 0.8, | ||
"x": 0.1, | ||
"y": 0.1 | ||
}, | ||
"content": { | ||
"cell": "fe47bd48-3414-4657-92e7-8b8d6cb0df00", | ||
"part": "whole" | ||
}, | ||
"id": "7dded777-1ddf-4100-99ae-25cf1c15b575" | ||
} | ||
} | ||
} | ||
}, | ||
"themes": {} | ||
}, | ||
"toc": { | ||
"navigate_menu": true, | ||
"number_sections": true, | ||
"sideBar": true, | ||
"threshold": 6, | ||
"toc_cell": false, | ||
"toc_section_display": "block", | ||
"toc_window_display": false | ||
}, | ||
"widgets": { | ||
"state": {}, | ||
"version": "1.1.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Oops, something went wrong.