Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added stable-diffusion pipeline #266

Merged
merged 2 commits into from
Dec 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions frontend/core/pipelines/stable-diffusion-2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Stable Diffusion Image Generation Pipeline

This repository contains a Python function `compute` to generate images based on textual descriptions using the Stable Diffusion model. The function utilizes the `diffusers` library and GPU acceleration for efficient image generation.

## Features

- Generate high-quality images from textual prompts.
- Supports inference using the Euler Discrete Scheduler for diffusion.
- Utilizes GPU acceleration with `float16` for enhanced performance.

---

## Usage
The compute function accepts a textual description (prompt) and the number of inference steps to generate an image. The generated image is saved as result.png in the current working directory.

## Function Parameters
- prompt (str): Text description of the desired image.
- inference_steps (int): Number of diffusion steps for the generation process.
- Return Value:
The function returns a dictionary containing the path to the generated image:

## Model used
- https://huggingface.co/stabilityai/stable-diffusion-2
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
FROM python:3.9

WORKDIR /app

RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
RUN pip install diffusers transformers accelerate scipy safetensors

COPY computations.py .
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
{
"index": 0,
"history": [
{
"timestamp": 1731600898832,
"prompt": "Code Template",
"response": "def compute(in1, in2):\r\n \"\"\"A textual description of the compute function.\r\n\r\n Inputs:\r\n in1 (all): Textual description of in1\r\n in2 (all): Textual description of in2\r\n\r\n Outputs:\r\n out1 (all): Textual description of out1\r\n out2 (all): Textual description of out2\r\n\r\n Requirements:\r\n \"\"\"\r\n # some code\r\n out1 = 2 * in1\r\n out2 = \"This is the in2 string:\" + in2\r\n\r\n return {\"out1\": out1, \"out2\": out2}\r\n\r\n\r\ndef test():\r\n \"\"\"Test the compute function.\"\"\"\r\n\r\n print(\"Running test\")\r\n"
},
{
"timestamp": 1731601223108,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n\n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
},
{
"timestamp": 1731601351634,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n\n use GPU to run this pipeline, we are using float16 dtype\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n\n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
},
{
"timestamp": 1731603317095,
"prompt": "Manual Edit of computations.py",
"response": "def compute(prompt, inference_steps):\n \"\"\"\n prompt: text description of image\n inference_steps: difussion steps\n\n output: generated image path\n\n use GPU to run this pipeline, we are using float16 dtype\n \"\"\"\n from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler\n import torch \n model_id = \"stabilityai/stable-diffusion-2\"\n \n # Use the Euler scheduler here instead\n scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)\n pipe = pipe.to(\"cuda\")\n \n image = pipe(prompt, num_inference_steps=inference_steps).images[0]\n \n image.save(\"result.png\")\n\n return {\"generated_image_path\": \"result.png\"}\n\n\ndef test():\n \"\"\"Test the compute function.\"\"\"\n\n print(\"Running test\")\n"
}
]
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
def compute(prompt, inference_steps):
"""
Pipeline to generate the images based on textual description. takes text and inference step as an inputs and return the genreated image.

prompt: text description of image
inference_steps: difussion steps

output: generated image path

use GPU to run this pipeline, we are using float16 dtype
"""
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch
model_id = "stabilityai/stable-diffusion-2"

# Use the Euler scheduler here instead
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

image = pipe(prompt, num_inference_steps=inference_steps).images[0]

image.save("result.png")

return {"generated_image_path": "result.png"}


def test():
"""Test the compute function."""

print("Running test")
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
{
"information": {
"id": "stable-diffusion-2",
"name": "Stable Diffusion 2",
"description": "Pipeline to generate the images based on textual description. takes text and inference step as an inputs and return the genreated image.\nprompt: text description of image\ninference_steps: difussion steps\n\noutput: generated image path\n\nuse GPU to run this pipeline, we are using float16 dtype",
"system_versions": [
"0.1"
],
"block_version": "block version number",
"block_source": "core/blocks/stable-diffusion-2",
"block_type": "compute"
},
"inputs": {
"prompt": {
"type": "Any",
"connections": [
{
"block": "parameter-hhz20qr4vytg",
"variable": "parameter"
}
]
},
"inference_steps": {
"type": "Any",
"connections": [
{
"block": "parameter-cuha2229jdsa",
"variable": "parameter"
}
]
}
},
"outputs": {
"generated_image_path": {
"type": "Any",
"connections": [
{
"block": "view-images-gwly233ys03y",
"variable": "image_paths_view"
}
]
}
},
"action": {
"container": {
"image": "stable-diffusion-2",
"version": "stable-diffusion-2-1k08gnfkag96",
"command_line": [
"python",
"-u",
"entrypoint.py"
]
},
"resources": {
"cpu": {
"request": "",
"limit": ""
},
"memory": {
"request": "",
"limit": ""
},
"gpu": {
"count": 1
}
}
},
"views": {
"node": {
"active": "True or False",
"title_bar": {
"background_color": "#6b2be0"
},
"preview": {},
"html": "",
"pos_x": "786",
"pos_y": "188",
"pos_z": "999",
"behavior": "modal",
"order": {
"input": [
"prompt",
"inference_steps"
],
"output": [
"generated_image_path"
]
}
}
},
"events": {}
}
Loading
Loading