A PyTorch model for Stanford Cars Classification
- python 3.7
- pytorch
- scikit-image
- numpy
- opencv-python
- tensorboard
-
pytorch: see https://pytorch.org/get-started/locally/
-
scikit, opencv
pip install scikit-image numpy opencv-python tensorboard
data_processing/
│
├── datasets/ - folder contain training & testing data
├── cars_metas/ - folder contain meta data for training & testing
├── cars_train_annos.mat - train meta
├── cars_test_annos_withlabels.mat - test meta
├── training/
├── original/ - original cars from training data
├── 00001.jpg
├── 00002.jpg
├── 00003.jpg
├── 00004.jpg
├── ...
├── extracted/ - cars after extracted using bounding box label
├── testing/
├── original/ - original cars from testing data
├── 00001.jpg
├── 00002.jpg
├── 00003.jpg
├── 00004.jpg
├── ...
├── extracted/ - cars after extracted using bounding box label
Training data download: http://imagenet.stanford.edu/internal/car196/cars_train.tgz
Testing data download: http://imagenet.stanford.edu/internal/car196/cars_test.tgz
After download, extract and copy image to data_processing/datasets/training/original
and data_processing/datasets/testing/original
Standford Cars Dataset come with annotated label, so we would like to use it to extract only cars and remove background. This help our model focus only on vehicles
For training:
cd data_processing
python extract_cars.py --meta "datasets/cars_metas/cars_train_annos.mat" -input "datasets/training/original/ -output "datasets/training/extracted/"
For testing:
cd data_processing
python extract_cars.py --meta "datasets/cars_metas/cars_test_annos_withlabels.mat" -input "datasets/testing/original/ -output "datasets/testing/extracted/"
The model contain:
- ResNet 151
- Cyclic Learning Rate: default from 0.01 to 0.1
- Auto Augmentation with ImageNet pretrained
You can start training model imediately with the following script:
python train.py -c train_config.json
Resuming
python train.py -c train_config.json -r "path/to/model.pth"
You can download pretrained model here: https://www.dropbox.com/s/w550z44ur2pwr4j/model_best.pth?dl=0
And run following script with downloaded model to predict classes on test set
python test.py -c test_config.json -m "pretrained_model.pth" -o "test_output/"
Test Accuracy: 93.4%