Lei Yang · Tao Tang · Jun Li · Kun Yuan · Peng Chen · Li Wang · Yi Huang · Lei Li · Xinyu Zhang · Kaicheng Yu
BEVHeight++ is a new vision-based 3D object detector specially designed for both roadside and vihicle-side scenarios. On popular 3D detection benchmarks of roadside cameras, BEVHeight++ surpasses all previous vision-centric methods by a significant margin. In terms of the ego-vehicle scenario, our BEVHeight++ also possesses superior over depth-only methods.
- [2025/02/03] Release the pre-trained models!
- [2024/09/06] Both arXiv and codebase are released!
Table of Contents
Train BEVDepth / BEVHeight / BEVHeight++
with 8 GPUs
python [EXP_PATH] --amp_backend native -b 8 --gpus 8
Eval BEVDepth / BEVHeight / BEVHeight++
with 8 GPUs
python [EXP_PATH] --ckpt_path [CKPT_PATH] -e -b 8 --gpus 8
- For more specific training and evaluation commands, please refer to the
train_scripts
directory.
- For experiments on nuScenes dataset, please refer to the
nuscense_bevheight_plus
directory and this document .
- DAIR-V2X-I Dataset
Method | Config | Car | Pedestrain | Cyclist | ||||||
[email protected] | [email protected] | [email protected] | ||||||||
Easy | Mod. | Hard | Easy | Mod. | Hard | Easy | Mod. | Hard | ||
BEVDepth | config | 75.50 | 63.58 | 63.67 | 34.95 | 33.42 | 33.27 | 55.67 | 55.47 | 55.34 |
BEVHeight | config | 77.48 | 65.46 | 65.53 | 41.22 | 39.29 | 39.46 | 60.23 | 60.08 | 60.54 |
BEVHeight++ | config | 79.31 | 68.62 | 68.68 | 42.87 | 40.88 | 41.06 | 60.76 | 60.52 | 61.01 |
- Rope3D Dataset
Method | Config | Car | [email protected] | Big Vehicle | [email protected] | Car | [email protected] | Big Vehicle | [email protected] | ||||
AP | Rope | AP | Rope | AP | Rope | AP | Rope | ||
BEVDepth | config | 69.63 | 74.70 | 45.02 | 54.64 | 42.56 | 53.05 | 21.47 | 35.82 |
BEVHeight | config | 74.60 | 78.72 | 48.93 | 57.70 | 45.73 | 55.62 | 23.07 | 37.04 |
BEVHeight++ | config | 76.12 | 80.91 | 50.11 | 59.92 | 47.03 | 57.77 | 24.43 | 39.57 |
- KITTI Dataset
Method | AP|3D | AP|BEV | Config | model ckpt | ||||
Easy | Mod. | Hard | Easy | Mod. | Hard | |||
BEVDepth | 10.69 | 7.31 | 5.88 | 35.14 | 23.22 | 19.33 | config | \ |
BEVHeight | 10.61 | 6.97 | 5.51 | 34.58 | 22.05 | 17.96 | config | \ |
BEVHeight++ | 11.37 | 8.06 | 6.35 | 36.81 | 25.49 | 20.81 | config | model_ckpt |
- KITTI-360 Dataset
Method | AP3D (IoU=0.5) | AP3D (IoU=0.25) | config | model ckpt | ||||
AP (Lrg) | AP (Car) | mAP | AP (Lrg) | AP (Car) | mAP | |||
BEVDepth | 2.17 | 42.01 | 22.09 | 30.52 | 59.84 | 45.18 | config | model_ckpt |
BEVHeight | 1.78 | 41.76 | 21.77 | 33.02 | 56.69 | 44.85 | config | model_ckpt |
BEVHeight++ | 2.35 | 46.84 | 24.59 | 30.72 | 65.78 | 48.25 | config | model_ckpt |
- Waymo Dataset
- BEVDepth: config, model_ckpt
- BEVHeight: config, model_ckpt
- BEVHeight++: config, model_ckpt
IoU3D | Difficulty | Method | AP3D | APH3D | ||||||
All | 0-30 | 30-50 | 50- |
All | 0-30 | 30-50 | 50- |
|||
0.7 | Level_1 | BEVDepth | 2.86 | 7.51 | 1.13 | 0.12 | 2.84 | 7.45 | 1.11 | 0.12 |
BEVHeight | 2.62 | 6.78 | 1.35 | 0.08 | 2.60 | 6.71 | 1.33 | 0.08 | ||
BEVHeight++ | 3.10 | 8.04 | 1.41 | 0.13 | 3.07 | 7.96 | 1.40 | 0.13 | ||
0.7 | Level_2 | BEVDepth | 2.68 | 7.50 | 1.09 | 0.10 | 2.66 | 7.43 | 1.08 | 0.10 |
BEVHeight | 2.46 | 6.77 | 1.30 | 0.07 | 2.44 | 6.70 | 1.29 | 0.07 | ||
BEVHeight++ | 2.91 | 8.03 | 1.36 | 0.12 | 2.88 | 7.95 | 1.35 | 0.11 | ||
0.5 | Level_1 | BEVDepth | 13.22 | 31.67 | 6.01 | 1.43 | 13.05 | 31.27 | 5.93 | 1.41 |
BEVHeight | 12.73 | 29.87 | 5.90 | 1.33 | 12.55 | 29.45 | 5.83 | 1.30 | ||
BEVHeight++ | 14.00 | 32.59 | 6.31 | 1.86 | 13.81 | 32.16 | 6.25 | 1.83 | ||
0.5 | Level_2 | BEVDepth | 12.41 | 31.61 | 5.81 | 1.25 | 12.25 | 31.21 | 5.73 | 1.23 |
BEVHeight | 11.95 | 29.81 | 5.70 | 1.16 | 11.78 | 29.40 | 5.63 | 1.14 | ||
BEVHeight++ | 13.14 | 32.53 | 6.10 | 1.62 | 12.97 | 32.10 | 6.04 | 1.59 |
This project is not possible without the following codebases.
If you use BEVHeight++ in your research, please cite our work by using the following BibTeX entry:
@article{yang2023bevheight++,
title={Bevheight++: Toward robust visual centric 3d object detection},
author={Yang, Lei and Tang, Tao and Li, Jun and Chen, Peng and Yuan, Kun and Wang, Li and Huang, Yi and Zhang, Xinyu and Yu, Kaicheng},
journal={arXiv preprint arXiv:2309.16179},
year={2023}
}