Skip to content

yanglei18/BEVHeight_Plus

Repository files navigation

BEVHeight++: Toward Robust Visual Centric 3D Object Detection

Lei Yang · Tao Tang · Jun Li · Kun Yuan · Peng Chen · Li Wang · Yi Huang · Lei Li · Xinyu Zhang · Kaicheng Yu

Logo


PyTorch Lightning Docker

BEVHeight++ is a new vision-based 3D object detector specially designed for both roadside and vihicle-side scenarios. On popular 3D detection benchmarks of roadside cameras, BEVHeight++ surpasses all previous vision-centric methods by a significant margin. In terms of the ego-vehicle scenario, our BEVHeight++ also possesses superior over depth-only methods.

News

  • [2025/02/03] Release the pre-trained models!
  • [2024/09/06] Both arXiv and codebase are released!

Table of Contents
  1. Getting Started
  2. Acknowledgment
  3. Citation

Getting Started

Train BEVDepth / BEVHeight / BEVHeight++ with 8 GPUs

python [EXP_PATH] --amp_backend native -b 8 --gpus 8

Eval BEVDepth / BEVHeight / BEVHeight++ with 8 GPUs

python [EXP_PATH] --ckpt_path [CKPT_PATH] -e -b 8 --gpus 8
  • For more specific training and evaluation commands, please refer to the train_scripts directory.
  • For experiments on nuScenes dataset, please refer to the nuscense_bevheight_plus directory and this document .

Experimental Results

  • DAIR-V2X-I Dataset
Method Config Car Pedestrain Cyclist
[email protected] [email protected] [email protected]
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
BEVDepth config 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34
BEVHeight config 77.48 65.46 65.53 41.22 39.29 39.46 60.23 60.08 60.54
BEVHeight++ config 79.31 68.62 68.68 42.87 40.88 41.06 60.76 60.52 61.01
  • Rope3D Dataset
Method Config Car | [email protected] Big Vehicle | [email protected] Car | [email protected] Big Vehicle | [email protected]
AP Rope AP Rope AP Rope AP Rope
BEVDepth config 69.63 74.70 45.02 54.64 42.56 53.05 21.47 35.82
BEVHeight config 74.60 78.72 48.93 57.70 45.73 55.62 23.07 37.04
BEVHeight++ config 76.12 80.91 50.11 59.92 47.03 57.77 24.43 39.57
  • KITTI Dataset
Method AP|3D AP|BEV Config model ckpt
Easy Mod. Hard Easy Mod. Hard
BEVDepth 10.69 7.31 5.88 35.14 23.22 19.33 config \
BEVHeight 10.61 6.97 5.51 34.58 22.05 17.96 config \
BEVHeight++ 11.37 8.06 6.35 36.81 25.49 20.81 config model_ckpt
  • KITTI-360 Dataset
Method AP3D (IoU=0.5) AP3D (IoU=0.25) config model ckpt
AP (Lrg) AP (Car) mAP AP (Lrg) AP (Car) mAP
BEVDepth 2.17 42.01 22.09 30.52 59.84 45.18 config model_ckpt
BEVHeight 1.78 41.76 21.77 33.02 56.69 44.85 config model_ckpt
BEVHeight++ 2.35 46.84 24.59 30.72 65.78 48.25 config model_ckpt
  • Waymo Dataset
IoU3D Difficulty Method AP3D APH3D
All 0-30 30-50 50- $\infty$ All 0-30 30-50 50- $\infty$
0.7 Level_1 BEVDepth 2.86 7.51 1.13 0.12 2.84 7.45 1.11 0.12
BEVHeight 2.62 6.78 1.35 0.08 2.60 6.71 1.33 0.08
BEVHeight++ 3.10 8.04 1.41 0.13 3.07 7.96 1.40 0.13
0.7 Level_2 BEVDepth 2.68 7.50 1.09 0.10 2.66 7.43 1.08 0.10
BEVHeight 2.46 6.77 1.30 0.07 2.44 6.70 1.29 0.07
BEVHeight++ 2.91 8.03 1.36 0.12 2.88 7.95 1.35 0.11
0.5 Level_1 BEVDepth 13.22 31.67 6.01 1.43 13.05 31.27 5.93 1.41
BEVHeight 12.73 29.87 5.90 1.33 12.55 29.45 5.83 1.30
BEVHeight++ 14.00 32.59 6.31 1.86 13.81 32.16 6.25 1.83
0.5 Level_2 BEVDepth 12.41 31.61 5.81 1.25 12.25 31.21 5.73 1.23
BEVHeight 11.95 29.81 5.70 1.16 11.78 29.40 5.63 1.14
BEVHeight++ 13.14 32.53 6.10 1.62 12.97 32.10 6.04 1.59

Acknowledgment

This project is not possible without the following codebases.

Citation

If you use BEVHeight++ in your research, please cite our work by using the following BibTeX entry:

@article{yang2023bevheight++,
  title={Bevheight++: Toward robust visual centric 3d object detection},
  author={Yang, Lei and Tang, Tao and Li, Jun and Chen, Peng and Yuan, Kun and Wang, Li and Huang, Yi and Zhang, Xinyu and Yu, Kaicheng},
  journal={arXiv preprint arXiv:2309.16179},
  year={2023}
}