Skip to content

wzh0328/EHMCANet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

EHMCANet

This repo holds code for "Efficient Hierarchical Multiscale Convolutional Attention for Accurate Medical Image Segmentation"

Usage

1. Prepare data

  • Download the MoNuSeg dataset from the official website. Then prepare the datasets in the following format for easy use of the code:
  ├── MoNuSeg
    ├── Train_Folder
    │    └──img
    │          ├── TCGA-21-5784-01Z-00-DX1.png
    │          ├── TCGA-21-5786-01Z-00-DX1.png
    │          └── ......
    │    └──labelcol
    │          ├── TCGA-21-5784-01Z-00-DX1.png
    │          ├── TCGA-21-5786-01Z-00-DX1.png
    │          └── ......
    ├── Val_Folder
    │    └──img
    │          ├── TCGA-18-5592-01Z-00-DX1.png
    │          ├── TCGA-AY-A8YK-01A-01-TS1.png
    │          └── ......
    │    └──labelcol
    │          ├── TCGA-18-5592-01Z-00-DX1.png
    │          ├── TCGA-AY-A8YK-01A-01-TS1.png
    │          └── ......
    └── Test_Folder
    │    └──img
    │          ├── TCGA-2Z-A9J9-01A-01-TS1.png
    │          ├── TCGA-44-2665-01B-06-BS6.png
    │          └── ......
    │    └──labelcol
    │          ├── TCGA-2Z-A9J9-01A-01-TS1.png
    │          ├── TCGA-44-2665-01B-06-BS6.png
    │          └── ......

2. Environment

Please prepare an environment with python>=3.7, and then use the command "pip install -r requirements.txt" for the dependencies.

3. Train/Test

  • Train
EHMCANet:
python EHMCANet/train.py --root_path ./EHMCANet/train.py --batch_size 4 --img_size 256 
  • Test
EHMCANet:
python EHMCANet/test.py --root_path ./EHMCANet/test.py --img_size 256 

You can download the weights of our network from the link.

Reference

Citations

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages