This repo holds code for "Efficient Hierarchical Multiscale Convolutional Attention for Accurate Medical Image Segmentation"
- Download the MoNuSeg dataset from the official website. Then prepare the datasets in the following format for easy use of the code:
├── MoNuSeg
├── Train_Folder
│ └──img
│ ├── TCGA-21-5784-01Z-00-DX1.png
│ ├── TCGA-21-5786-01Z-00-DX1.png
│ └── ......
│ └──labelcol
│ ├── TCGA-21-5784-01Z-00-DX1.png
│ ├── TCGA-21-5786-01Z-00-DX1.png
│ └── ......
├── Val_Folder
│ └──img
│ ├── TCGA-18-5592-01Z-00-DX1.png
│ ├── TCGA-AY-A8YK-01A-01-TS1.png
│ └── ......
│ └──labelcol
│ ├── TCGA-18-5592-01Z-00-DX1.png
│ ├── TCGA-AY-A8YK-01A-01-TS1.png
│ └── ......
└── Test_Folder
│ └──img
│ ├── TCGA-2Z-A9J9-01A-01-TS1.png
│ ├── TCGA-44-2665-01B-06-BS6.png
│ └── ......
│ └──labelcol
│ ├── TCGA-2Z-A9J9-01A-01-TS1.png
│ ├── TCGA-44-2665-01B-06-BS6.png
│ └── ......
Please prepare an environment with python>=3.7, and then use the command "pip install -r requirements.txt" for the dependencies.
- Train
EHMCANet:
python EHMCANet/train.py --root_path ./EHMCANet/train.py --batch_size 4 --img_size 256
- Test
EHMCANet:
python EHMCANet/test.py --root_path ./EHMCANet/test.py --img_size 256
You can download the weights of our network from the link.