generated from pbelmans/latex-template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8ebf570
commit aeae060
Showing
5 changed files
with
158 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
\section{Lecture 11 -- 24th January 2025}\label{sec: lecture 11} | ||
We return to a consideration of the asymptotics of general Nahm sums | ||
$$f_{a}(t,q)=\sum_{n\geq0}\frac{q^{\frac{1}{2}an^{2}}}{(q;q)_{n}}t^{n}$$ | ||
for $a\in\NN$ even. By \Cref{thm: Nahm sum asymptotics at roots of unity}, we have, substituting $\varepsilon=-h$ that | ||
$$f_{a}(t,q)\sim \exp\left(-\frac{V(t^{m})}{m^{2}\varepsilon}\right)\cdot O(\varepsilon)$$ | ||
with $O(h)\in\QQ(\zeta_{m})[t][[\varepsilon]]$ and | ||
$$V(t)=-\Li_{2}(1-Z(t))-\frac{a}{2}\log(Z(t))^{2}$$ | ||
and $Z(t)$ satisfying the ansatz $1-Z(t)=t\cdot Z(t)^{a}$. Note that by $a$ even, the $(-1)^{a}$ factor becones irrelevant. | ||
|
||
We want to understand the series $O(h)$, and in particular to show that it lies in the ideal | ||
$$\frac{\sqrt{\delta(t^{m})}}{\sqrt[m]{\varepsilon_{m}}}\cdot R_{m}[h]$$ | ||
and $R_{m}= R\otimes_{\QQ[t]}\QQ(\zeta_{m})[t]$ along the map $t\mapsto t^{m}$ for | ||
$$R=\QQ\left[t,z,\frac{1}{z(1-z)\delta}\right]/(1-z=tz^{a})$$ | ||
$\delta=z+a(1-z)$. | ||
|
||
Generally, there are three methods for computing asymptotic expansions: | ||
\begin{itemize} | ||
\item (KWB Method) Divide by the exponential prefactor $\exp\left(-\frac{V(t^{m})}{m^{2}h}\right)$ and get a $q$-difference equation for the remaining factor $g_{a}(t,q)$ which can be solved by iterative integration which yields an algebraic function at each step. | ||
\item Write | ||
$$f_{a}(t,q)=\frac{1}{(q;q)_{\infty}}\sum_{n\in\ZZ}(q^{n+1};q)_{\infty}q^{\frac{1}{2}an^{2}}t^{n}$$ | ||
as $q\to 1$. It can be shown that this quantity is well-approximated by the integral over $\RR$ under an appropriate reparametrization. | ||
\item (Meinardus' Method) Write $f_{a}(t,q)$ as the contour integral over $S^{1}$ | ||
$$f_{a}(t,q)=\int_{S^{1}}\left(\sum_{n\in\ZZ}q^{\frac{1}{2}an^{2}}(z^{a}x)^{-n}\right)((1-z)x,q)^{-1}_{\infty}\frac{dx}{x}$$ | ||
which is convergent as when $t$ is small, $z$ is close to 1 so the second factor is convergent and the $\Theta$-function of the first factor is also convergent. | ||
\end{itemize} | ||
\begin{remark} | ||
The second and third methods above treat $f_{a}(t,q)$ as holomorphic functions on the open disc $|q|<1$ and compute asymptotics of $f_{a}(t,q)$ as a complex analytic function. | ||
\end{remark} | ||
The latter two methods, which rely on complex analysis allow us to leverage the property of the $\Theta$-function which relates the asymptotics as $q\to\zeta_{m}$ to the asymptotics as $q\to i\infty$. | ||
\begin{proposition}\label{prop: modularity of Theta function} | ||
If $A,B\in\CC$ such that $\mathrm{Re}(A)>0$ then | ||
$$\sum_{n\in\ZZ}\exp\left(-\frac{1}{2}An^{2}-Bn\right)=\sqrt{\frac{2\pi}{A}}\sum_{n\in\ZZ}\exp\left(\frac{1}{2}\cdot\frac{(B+2\pi i n)^{2}}{A}\right).$$ | ||
\end{proposition} | ||
\begin{proof} | ||
Apply Poisson summation which states for functions with all derivatives decaying at $\infty$ satisfy | ||
$$\sum_{n\in\ZZ}f(n)=\sum_{n\in\ZZ}\widehat{f}(n)$$ | ||
where $\widehat{f}$ denotes the Fourier transform to $f(x)=\exp\left(-\frac{1}{2}Ax^{2}+Bx\right)$. | ||
|
||
We have | ||
\footnotesize | ||
\begin{align*} | ||
\int_{\RR}\exp\left(-\frac{1}{2}Ax^{2}+Bx\right)\exp(2\pi i xy)dy &= \int_{\RR}\exp\left(-\frac{1}{2}Ax^{2}-(B+2\pi i y)x\right)dy \\ | ||
&= \int_{\RR}\exp\left(-\frac{1}{2}A\left(\frac{B+2\pi i y}{A}\right)^{2}+\frac{1}{2}\left(\frac{(B+2\pi i y)^{2}}{A}\right)\right)dy \\ | ||
&= \exp\left(\frac{1}{2}\frac{(B+2\pi i y)^{2}}{A}\right)\int_{\RR}\exp\left(-\frac{1}{2}Ax^{2}\right)dx \\ | ||
&= \exp\left(\frac{1}{2}\frac{(B+2\pi i y)^{2}}{A}\right)\sqrt{\frac{2\pi}{A}} | ||
\end{align*} | ||
\normalsize | ||
as desired. | ||
\end{proof} | ||
Recall that for $R$ as above, we have $R_{m}=R\otimes_{\QQ[t]}\QQ(\zeta_{m})[t^{1/m}]$ and a class $V^{\mathrm{univ}}$ in $H^{1}(\ZZ(2)(R/\ZZ[t]))$ whose \'{e}tale realization is a class in $H^{1}_{\mathsf{\acute{e}t}}(R_{m},\ZZ/m\ZZ(2))$ where $\ZZ/m\ZZ(2)\cong\mu_{m}$ so $H^{1}_{\mathsf{\acute{e}t}}(R_{m},\ZZ/m\ZZ(2))\cong R_{m}^{\times}/(R_{m}^{\times})^{m}$, a $\mu_{m}$-torsor. This produces a $\mathbb{G}_{m}$-torsor after base-change, that is, a line bundle $L_{m}$ on $R_{m}[[h]]$. | ||
\begin{theorem} | ||
The $q$-difference equation defining $f_{a}(t,q)$ admits a unique solution 1 modulo $t$ in the module $L_{m}$ over $R_{m}[[h]]$. | ||
\end{theorem} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
\section{Lecture 12 -- 31st January 2025}\label{sec: lecture 12} | ||
Recall from \Cref{thm: Nahm sum asymptotics at roots of unity} and the discussion of the first part of \Cref{sec: lecture 11} that we have | ||
$$f_{a}(t,q)\sim\exp\left(-\frac{V(t)}{m^{2}\varepsilon}g_{a,m}(t,q)\right)$$ | ||
as $q\to\zeta_{m}$ and $q=\zeta_{m}\exp(-\varepsilon)$ and $g_{a,m}(t,q)\in\QQ(\zeta_{m})[t][[\varepsilon]]$. Setting | ||
$$R_{m}=R[\zeta_{m},t^{1/m}], S_{m}=R_{m}\left[\frac{1}{2},\sqrt{\delta}\right]$$ | ||
we can show the following theorem. | ||
\begin{theorem}\label{thm: power series of Nahm expansion at roots of unity} | ||
Let $f_{a}(t,q)$ be a Nahm sum with power series term $g_{a,m}(t,q)$ as $q\to\zeta_{m}$. Then | ||
$$g_{a,m}(t^{1/m},q)\in\frac{\sqrt{\delta}}{\sqrt[m]{\varepsilon_{m}}}R_{m}\left[\frac{1}{m}\right][[\varepsilon]]\subseteq\frac{\sqrt{\delta}}{\sqrt[m]{\varepsilon_{m}}}S_{m}\left[\frac{1}{m}\right][[\varepsilon]]$$ | ||
where $\delta=z+a(1-z)$ and $\varepsilon_{m}\in H^{1}(R_{m},\mu_{m})\cong R_{m}^{\times}/(R_{m}^{\times})^{m}$ is the modulo $m$ regulator of the relative motivic cohomology class $V^{\univ}\in H^{1}\left(\ZZ(2)(R/\ZZ[t])\right).$ | ||
\end{theorem} | ||
Moreover, each $\mu_{m}$-torsor naturally gives rise to a $\GG_{m}$-torsor which by canonical deformation over nilpotents gives rise to a line bundle $L_{m}$ over $\spec\left(R_{m}[\frac{1}{m}][[\varepsilon]]\right)$ and by change $L_{m}'$ over $\spec\left(S_{m}[\frac{1}{m}][[\varepsilon]]\right)$ for each $\varepsilon_{m}$. Sections of these line bundles are elements of the module $\frac{1}{\sqrt[m]{\varepsilon_{m}}}R_{m}[\frac{1}{m}][[\varepsilon]]$. | ||
|
||
Geometrically, we want to consider restricting scalars from $(S_{m}\otimes\QQ)[[q-\zeta_{m}]]\cong(S_{m}\otimes\QQ)[[\varepsilon]]$ to $S_{m}[[q-\zeta_{m}]]\cong S_{m}[[\varepsilon]]$. We do so by considering the $p$-integral case comparing the expansions at $q=1$ and $q=\zeta_{p}$ and the ways in which they determine each other. | ||
|
||
Fix a prime $p>3$ and consider the embedding $\QQ\to\QQ_{p}$, where we have $\widehat{R}=R_{p}^{\wedge},\widehat{S}=S_{p}^{\wedge}$ are the $p$-adic completions of $R,S$, respectively. We obtain $\widehat{R_{m}}=\widehat{R}\widehat{\otimes}_{\ZZ_{p}\langle t\rangle}\ZZ_{p}\langle\zeta_{p^{m}},t^{1/p^{m}}\rangle,\widehat{S_{m}}=\widehat{S}\widehat{\otimes}_{\ZZ_{p}\langle t\rangle}\ZZ_{p}\langle\zeta_{p^{m}},t^{1/m}\rangle$ analogously. Passing to the limit, we have | ||
$$\widehat{R_{\infty}}=\lim_{m}\widehat{R_{m}}$$ | ||
which is an integral perfectoid ring over $R_{\infty}^{0}=\ZZ_{p}\langle\zeta_{p^{\infty}},t^{1/p^{\infty}}\rangle$. In this setting, we can consider the tilt $R_{\infty}^{0,\flat}=\lim_{x\mapsto x^{p}}(\ZZ_{p}\langle\zeta_{p},t^{1/m}\rangle/p), \widehat{R_{\infty}}^{\flat}=\lim_{x\mapsto x^{p}}(\widehat{R_{\infty}}/p)$. | ||
\begin{example} | ||
Consider $\ZZ_{p}\langle\zeta_{1/p^{\infty}}\rangle$. The tilt $\ZZ\langle\zeta_{p^{\infty}}\rangle^{\flat}$ contains the element $(\overline{1},\overline{\zeta_{p}},\overline{\zeta_{p^{2}}},\dots)=\varepsilon$ and we can produce an isomorphism $\ZZ\langle\zeta_{p^{\infty}}\rangle^{\flat}\cong\FF_{p}[[(\varepsilon-1)^{1/p^{\infty}}]]$. | ||
\end{example} | ||
Per the previous example, there is a map $\ZZ_{p}\langle \zeta_{p^{\infty}}\rangle^{\flat}\mapsto R_{\infty}^{0,\flat}$ taking the element $\varepsilon$ to $(t,t^{1/p},t^{1/p^{2}},\dots)$ which we denote $t^{\flat}$. | ||
|
||
In $p$-adic Hodge theory, we also have the $A_{\inf}(-)$ construction taking a ring to the ring of its $p$-typical Witt vectors. We have $A_{\inf}(\ZZ_{p}\langle\zeta_{p^{\infty}}\rangle)\cong\ZZ_{p}\langle q^{1/p^{\infty}}\rangle^{\wedge}_{(q-1)}, A_{\inf}(R^{0}_{\infty})\cong\ZZ_{p}\langle q^{1/p^{\infty}}[t^{\flat}]^{1/p^{\infty}}\rangle^{\wedge}_{(q-1)}$. These rings are still defined by the Nahm equation, replacing $t$ by the Teichm\"{u}ller lift $[t^{\flat}]$ of $t$. This gives the pushout diagram | ||
$$% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFpaX3twfVxcbGFuZ2xlIHEsXFx3aWRldGlsZGV7dH1cXHJhbmdsZV57XFx3ZWRnZX1feyhxLTEpfSJdLFswLDEsIlxcWlpfe3B9XFxsYW5nbGUgcSxcXHdpZGV0aWxkZXt0fSx6XFxyYW5nbGUvKDEtej0oLTEpXnthfVxcd2lkZXRpbGRle3R9el57YX0pIl0sWzIsMCwiQV97XFxpbmZ9KFJeezB9X3tcXGluZnR5fSkiXSxbMiwxLCJBX3tcXGluZn1cXGxlZnQoXFx3aWRlaGF0e1Jfe1xcaW5mdHl9fVxccmlnaHQpIl0sWzEsM10sWzAsMl0sWzIsM10sWzAsMV1d | ||
\begin{tikzcd} | ||
{\ZZ_{p}\langle q,\widetilde{t}\rangle^{\wedge}_{(q-1)}} && {A_{\inf}(R^{0}_{\infty})} \\ | ||
{\ZZ_{p}\langle q,\widetilde{t},z\rangle/(1-z=(-1)^{a}\widetilde{t}z^{a})} && {A_{\inf}\left(\widehat{R_{\infty}}\right)} | ||
\arrow[from=1-1, to=1-3] | ||
\arrow[from=1-1, to=2-1] | ||
\arrow[from=1-3, to=2-3] | ||
\arrow[from=2-1, to=2-3] | ||
\end{tikzcd}$$ | ||
and where the map $\ZZ_{p}\langle q,\widetilde{t}\rangle^{\wedge}_{(q-1)}\to A_{\inf}(R^{0}_{\infty})$ is by $\widetilde{t}\mapsto[t^{\flat}]$. On specializations this diagram gives rise to the commutative cube | ||
$$% https://q.uiver.app/#q=WzAsOCxbMSwxLCJcXFpaX3twfVxcbGFuZ2xlIHEsXFx3aWRldGlsZGV7dH1cXHJhbmdsZV57XFx3ZWRnZX1feyhxLTEpfSJdLFsxLDIsIlxcWlpfe3B9XFxsYW5nbGUgcSxcXHdpZGV0aWxkZXt0fSx6XFxyYW5nbGUvKDEtej0oLTEpXnthfVxcd2lkZXRpbGRle3R9el57YX0pIl0sWzMsMSwiQV97XFxpbmZ9KFJeezB9X3tcXGluZnR5fSkiXSxbMywyLCJBX3tcXGluZn1cXGxlZnQoXFx3aWRlaGF0e1Jfe1xcaW5mdHl9fVxccmlnaHQpIl0sWzAsMCwiXFxaWl97cH1cXGxhbmdsZVxcemV0YV97cF57bX19LHReezEvcF57bX19XFxyYW5nbGUiXSxbMCwzLCJcXHdpZGVoYXR7Ul97bX19Il0sWzQsMCwiUl57MH1fe1xcaW5mdHl9Il0sWzQsMywiXFx3aWRlaGF0e1Jfe1xcaW5mdHl9fSJdLFsxLDNdLFswLDJdLFsyLDNdLFswLDFdLFswLDQsInE9XFx6ZXRhX3twXnttfX0sdD10XnsxL3Bee219fSIsMix7ImxhYmVsX3Bvc2l0aW9uIjoyMH1dLFsyLDYsInE9XFx6ZXRhX3twXnttfX0sW3Ree1xcZmxhdH1dXFxtYXBzdG8gdF57MS9wXnttfX0iLDAseyJsYWJlbF9wb3NpdGlvbiI6MH1dLFszLDddLFs2LDddLFs0LDZdLFs1LDddLFs0LDVdLFsxLDVdXQ== | ||
\begin{tikzcd} | ||
{\ZZ_{p}\langle\zeta_{p^{m}},t^{1/p^{m}}\rangle} &&&& {R^{0}_{\infty}} \\ | ||
& {\ZZ_{p}\langle q,\widetilde{t}\rangle^{\wedge}_{(q-1)}} && {A_{\inf}(R^{0}_{\infty})} \\ | ||
& {\ZZ_{p}\langle q,\widetilde{t},z\rangle/(1-z=(-1)^{a}\widetilde{t}z^{a})} && {A_{\inf}\left(\widehat{R_{\infty}}\right)} \\ | ||
{\widehat{R_{m}}} &&&& {\widehat{R_{\infty}}} | ||
\arrow[from=1-1, to=1-5] | ||
\arrow[from=1-1, to=4-1] | ||
\arrow[from=1-5, to=4-5] | ||
\arrow["{q=\zeta_{p^{m}},t=t^{1/p^{m}}}"'{pos=0.2}, from=2-2, to=1-1] | ||
\arrow[from=2-2, to=2-4] | ||
\arrow[from=2-2, to=3-2] | ||
\arrow["{q=\zeta_{p^{m}},[t^{\flat}]\mapsto t^{1/p^{m}}}"{pos=0}, from=2-4, to=1-5] | ||
\arrow[from=2-4, to=3-4] | ||
\arrow[from=3-2, to=3-4] | ||
\arrow[from=3-2, to=4-1] | ||
\arrow[from=3-4, to=4-5] | ||
\arrow[from=4-1, to=4-5] | ||
\end{tikzcd}$$ | ||
where the map $\widehat{R_{m}}\to\widehat{R_{\infty}}$ takes $z$ to a Frobenius twist thereof. | ||
|
||
In fact, there is a line bundle on $\ZZ_{p}\langle q,\widetilde{t},z\rangle/(1-z=(-1)^{a}\widetilde{t}z^{a})$ given by | ||
|
||
interpolating the line bundles $L_{m}$ over $\widehat{R_{m}}[\frac{1}{p}][[q-\zeta_{p^{m}}]]$ such that the Nahm sum is a section of $L_{m}$ for each $m$. | ||
\begin{proposition}\label{prop: elements define line bundle} | ||
The set of all $g_{a}(t,q)\in\widehat{R}[\frac{1}{p}][[q-1]]$ with constant coefficient 1 at $q=1$ such that | ||
$$\log\left(g_{a,1}(t^{p},q^{p})\right)-p\cdot\log\left(g_{a,1}(t,q)\right)\in -\frac{V(t^{p})-p^{2}\cdot V(t)}{p\log(q)}+\frac{p}{q-1}\widehat{R}[[q-1]]$$ | ||
defines a line bundle $L_{1}$ over $\widehat{R}[[q-1]]$ that is canonically trivialized under base change to $\widehat{R}[\frac{1}{p}][[q-1]]$. | ||
\end{proposition} | ||
\begin{theorem} | ||
$g_{a,1}(t,q)$ is an element of $\sqrt{\delta}\widehat{R}[\frac{1}{p}][[q-1]]$. | ||
\end{theorem} | ||
\begin{proof} | ||
This follows from the admissability of $f_{a}(t,q)$ as a series as in \Cref{thm: modified 1x1 Nahm sum is admissable}. | ||
\end{proof} | ||
\begin{theorem} | ||
The base change of the line bundle $L_{1}$ of \Cref{prop: elements define line bundle} along the map $\widehat{R}[[q-1]]\to\widehat{R_{m}}[\frac{1}{p}][[q-\zeta_{p^{m}}]]$ recovers the line bundle $L_{m}$. | ||
\end{theorem} | ||
This suggests a $p$-adic compatibility of the de Rham and \'{e}tale realizations of $V^{\univ}$. | ||
\begin{theorem} | ||
Mapping $g_{a,1}(t,q)$ under this comparison of line bundles one recovers the asymptotics of $g_{a,m}(t^{1/m},q)$. | ||
\end{theorem} | ||
|
||
Aspirationally, for any scheme $S$ we would expect a theory of $S$-families of shtukas which are vector bundles over a complicated (analytic) stack $\spec(\ZZ)\times S$ and where motives over $S$ are examples of such shtukas. These line bundles that $q$-series-like Nahm sums ought be sections of live over $S\times\spec(\ZZ)$. Snappy. |
Oops, something went wrong.