-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feature/sqlite duckdb vector support #555
base: main
Are you sure you want to change the base?
Feature/sqlite duckdb vector support #555
Conversation
…for corresponding config changes.
Need to make FLOAT size configurable in table DDL. |
I really like this PR! Would you be able to resolve the conflicts in |
Sure thing! I made a commit to make the embedding size configurable in duckdb and resolved the merge conflicts in base.py. There were some also formatting issues in the method |
Thanks @aulring -- this is very close. The test is failing for me though: tests/test_vanna.py::test_vn_duckdb FAILED [ 57%]
=============================================================================================================== FAILURES ===============================================================================================================
____________________________________________________________________________________________________________ test_vn_duckdb ____________________________________________________________________________________________________________
self = RangeIndex(start=0, stop=0, step=1), key = 0
@doc(Index.get_loc)
def get_loc(self, key) -> int:
if is_integer(key) or (is_float(key) and key.is_integer()):
new_key = int(key)
try:
> return self._range.index(new_key)
E ValueError: 0 is not in range
.tox/mac/lib/python3.12/site-packages/pandas/core/indexes/range.py:413: ValueError
The above exception was the direct cause of the following exception:
def test_vn_duckdb():
import duckdb
with TemporaryDirectory() as temp_dir:
database_path = f"{temp_dir}/vanna.duckdb"
vn_duckdb = MyVannaDuckDb(
config={"api_key": OPENAI_API_KEY, "model": "gpt-4-turbo", "database": database_path}
)
vn_duckdb.connect_to_duckdb(database_path)
_ = vn_duckdb.get_training_data()
conn = duckdb.connect(database=database_path)
employee_ddl = """
CREATE TABLE employee (
employee_id INTEGER,
name VARCHAR,
occupation VARCHAR
);
"""
conn.execute(employee_ddl)
conn.execute(
"""
INSERT INTO employee VALUES
(1, 'Alice Johnson', 'Software Engineer'),
(2, 'Bob Smith', 'Data Scientist'),
(3, 'Charlie Brown', 'Product Manager'),
(4, 'Diana Prince', 'UX Designer'),
(5, 'Ethan Hunt', 'DevOps Engineer');
"""
)
conn.commit()
df_information_schema = vn_duckdb.run_sql(
"SELECT * FROM INFORMATION_SCHEMA.COLUMNS"
)
plan = vn_duckdb.get_training_plan_generic(df_information_schema)
vn_duckdb.train(plan=plan)
vn_duckdb.train(ddl=employee_ddl)
training_data = vn_duckdb.get_training_data()
assert not training_data.empty
similar_query = vn_duckdb.query_similar_embeddings("employee id", 3)
assert not similar_query.empty
sql = vn_duckdb.generate_sql(
question="write a query to get all software engineers from the employees table",
allow_llm_to_see_data=True,
)
df = vn_duckdb.run_sql(sql)
> assert df.name[0] == "Alice Johnson"
tests/test_vanna.py:236:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.tox/mac/lib/python3.12/site-packages/pandas/core/series.py:1121: in __getitem__
return self._get_value(key)
.tox/mac/lib/python3.12/site-packages/pandas/core/series.py:1237: in _get_value
loc = self.index.get_loc(label)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = RangeIndex(start=0, stop=0, step=1), key = 0
@doc(Index.get_loc)
def get_loc(self, key) -> int:
if is_integer(key) or (is_float(key) and key.is_integer()):
new_key = int(key)
try:
return self._range.index(new_key)
except ValueError as err:
> raise KeyError(key) from err
E KeyError: 0
.tox/mac/lib/python3.12/site-packages/pandas/core/indexes/range.py:415: KeyError
--------------------------------------------------------------------------------------------------------- Captured stdout call ---------------------------------------------------------------------------------------------------------
Adding ddl:
CREATE TABLE employee (
employee_id INTEGER,
name VARCHAR,
occupation VARCHAR
);
SQL Prompt: [{'role': 'system', 'content': "You are a DuckDB SQL expert. Please help to generate a SQL query to answer the question. Your response should ONLY be based on the given context and follow the response guidelines and format instructions. \n===Tables \n\n CREATE TABLE employee (\n employee_id INTEGER,\n name VARCHAR,\n occupation VARCHAR\n );\n \n\nThe following columns are in the employee table in the vanna database:\n\n| | table_catalog | table_schema | table_name | column_name | data_type | COLUMN_COMMENT |\n|---:|:----------------|:---------------|:-------------|:--------------|:------------|:-----------------|\n| 4 | vanna | main | employee | employee_id | INTEGER | |\n| 5 | vanna | main | employee | name | VARCHAR | |\n| 6 | vanna | main | employee | occupation | VARCHAR | |\n\nThe following columns are in the embeddings table in the vanna database:\n\n| | table_catalog | table_schema | table_name | column_name | data_type | COLUMN_COMMENT |\n|---:|:----------------|:---------------|:-------------|:--------------|:------------|:-----------------|\n| 0 | vanna | main | embeddings | id | VARCHAR | |\n| 1 | vanna | main | embeddings | text | VARCHAR | |\n| 2 | vanna | main | embeddings | model | VARCHAR | |\n| 3 | vanna | main | embeddings | vec | FLOAT[384] | |\n\n\n===Additional Context \n\n\n CREATE TABLE employee (\n employee_id INTEGER,\n name VARCHAR,\n occupation VARCHAR\n );\n \n\nThe following columns are in the employee table in the vanna database:\n\n| | table_catalog | table_schema | table_name | column_name | data_type | COLUMN_COMMENT |\n|---:|:----------------|:---------------|:-------------|:--------------|:------------|:-----------------|\n| 4 | vanna | main | employee | employee_id | INTEGER | |\n| 5 | vanna | main | employee | name | VARCHAR | |\n| 6 | vanna | main | employee | occupation | VARCHAR | |\n\nThe following columns are in the embeddings table in the vanna database:\n\n| | table_catalog | table_schema | table_name | column_name | data_type | COLUMN_COMMENT |\n|---:|:----------------|:---------------|:-------------|:--------------|:------------|:-----------------|\n| 0 | vanna | main | embeddings | id | VARCHAR | |\n| 1 | vanna | main | embeddings | text | VARCHAR | |\n| 2 | vanna | main | embeddings | model | VARCHAR | |\n| 3 | vanna | main | embeddings | vec | FLOAT[384] | |\n\n===Response Guidelines \n1. If the provided context is sufficient, please generate a valid SQL query without any explanations for the question. \n2. If the provided context is almost sufficient but requires knowledge of a specific string in a particular column, please generate an intermediate SQL query to find the distinct strings in that column. Prepend the query with a comment saying intermediate_sql \n3. If the provided context is insufficient, please explain why it can't be generated. \n4. Please use the most relevant table(s). \n5. If the question has been asked and answered before, please repeat the answer exactly as it was given before. \n6. Ensure that the output SQL is DuckDB SQL-compliant and executable, and free of syntax errors. \n"}, {'role': 'user', 'content': 'write a query to get all software engineers from the employees table'}]
Using model gpt-4-turbo for 993.0 tokens (approx)
LLM Response: ```sql
SELECT * FROM employee WHERE occupation = 'software engineer'; Extracted SQL: SELECT * FROM employee WHERE occupation = 'software engineer';
|
Added support for Duckdb and SQLite as vector stores.
Summary of changes:
connect_to_sqlite
andconnect_to_duckdb
with option to pass connSorry about the large number of formatting changes in
base.py
. I ran precommit and it changed like 40 files, so I reverted formatting changes on every file I didn't touch. I ran into a few issues with the current pre-commit file, so I swapped black and isort out with ruff as a suggestion.In addition to the test suite, here is a test I ran from a fresh install: