Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Image postprocessor #720

Open
wants to merge 19 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions tensorflow_lite_support/cc/task/processor/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,24 @@ cc_library_with_tflite(
],
)

cc_library_with_tflite(
name = "image_postprocessor",
srcs = ["image_postprocessor.cc"],
hdrs = ["image_postprocessor.h"],
tflite_deps = [
":processor",
"//tensorflow_lite_support/cc/task/vision/utils:image_tensor_specs",
],
deps = [
"//tensorflow_lite_support/cc/port:status_macros",
"//tensorflow_lite_support/cc/port:statusor",
"//tensorflow_lite_support/cc/task/vision/core:frame_buffer",
"//tensorflow_lite_support/cc/task/vision/utils:frame_buffer_utils",
"//tensorflow_lite_support/cc/task/core:task_utils",
"@com_google_absl//absl/status",
],
)

cc_library_with_tflite(
name = "classification_postprocessor",
srcs = ["classification_postprocessor.cc"],
Expand Down
129 changes: 129 additions & 0 deletions tensorflow_lite_support/cc/task/processor/image_postprocessor.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow_lite_support/cc/task/processor/image_postprocessor.h"

namespace tflite {
namespace task {
namespace processor {

namespace {

using ::absl::StatusCode;
using ::tflite::metadata::ModelMetadataExtractor;
using ::tflite::support::CreateStatusWithPayload;
using ::tflite::support::StatusOr;
using ::tflite::support::TfLiteSupportStatus;

} // namespace

/* static */
tflite::support::StatusOr<std::unique_ptr<ImagePostprocessor>>
ImagePostprocessor::Create(core::TfLiteEngine* engine, const int output_index,
const int input_index) {
ASSIGN_OR_RETURN(auto processor,
Processor::Create<ImagePostprocessor>(
/* num_expected_tensors = */ 1, engine, {output_index},
/* requires_metadata = */ false));

RETURN_IF_ERROR(processor->Init(input_index));
return processor;
}

absl::Status ImagePostprocessor::Init(const int input_index) {
if (input_index == -1) {
return tflite::support::CreateStatusWithPayload(
absl::StatusCode::kInvalidArgument,
absl::StrFormat("Input image tensor not set. Input index found: %d",
input_index),
tflite::support::TfLiteSupportStatus::kInputTensorNotFoundError);
}
ASSIGN_OR_RETURN(
auto output_specs,
vision::BuildImageTensorSpecs(*engine_->interpreter(),
*engine_->metadata_extractor(), false));
options_ = std::make_unique<vision::NormalizationOptions>(
output_specs.normalization_options.value());
return absl::OkStatus();
}

absl::StatusOr<vision::FrameBuffer> ImagePostprocessor::Postprocess() {
has_uint8_output_ = GetTensor()->type == kTfLiteUInt8;
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
const int kRgbPixelBytes = 3;
jonpsy marked this conversation as resolved.
Show resolved Hide resolved

vision::FrameBuffer::Dimension to_buffer_dimension = {
GetTensor()->dims->data[2], GetTensor()->dims->data[1]};
size_t output_byte_size =
GetBufferByteSize(to_buffer_dimension, vision::FrameBuffer::Format::kRGB);
std::vector<uint8> postprocessed_data(output_byte_size / sizeof(uint8), 0);

if (has_uint8_output_) { // No denormalization required.
if (GetTensor()->bytes != output_byte_size) {
return tflite::support::CreateStatusWithPayload(
absl::StatusCode::kInternal,
"Size mismatch or unsupported padding bytes between pixel data "
"and output tensor.");
}
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
const uint8* output_data =
core::AssertAndReturnTypedTensor<uint8>(GetTensor()).value();
postprocessed_data.insert(postprocessed_data.begin(), &output_data[0],
&output_data[output_byte_size / sizeof(uint8)]);
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
} else { // Denormalize to [0, 255] range.
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
if (GetTensor()->bytes / sizeof(float) !=
output_byte_size / sizeof(uint8)) {
return tflite::support::CreateStatusWithPayload(
absl::StatusCode::kInternal,
"Size mismatch or unsupported padding bytes between pixel data "
"and output tensor.");
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
}

uint8* denormalized_output_data = postprocessed_data.data();
const float* output_data =
core::AssertAndReturnTypedTensor<float>(GetTensor()).value();
const auto norm_options = GetNormalizationOptions();

if (norm_options.num_values == 1) {
jonpsy marked this conversation as resolved.
Show resolved Hide resolved
float mean_value = norm_options.mean_values[0];
float std_value = norm_options.std_values[0];

for (size_t i = 0; i < output_byte_size / sizeof(uint8);
++i, ++denormalized_output_data, ++output_data) {
*denormalized_output_data = static_cast<uint8>(std::round(std::min(
255.f, std::max(0.f, (*output_data) * std_value + mean_value))));
}
} else {
for (size_t i = 0; i < output_byte_size / sizeof(uint8);
++i, ++denormalized_output_data, ++output_data) {
*denormalized_output_data = static_cast<uint8>(std::round(std::min(
255.f,
std::max(0.f, (*output_data) * norm_options.std_values[i % 3] +
norm_options.mean_values[i % 3]))));
}
}
}

vision::FrameBuffer::Plane postprocessed_plane = {
/*buffer=*/postprocessed_data.data(),
/*stride=*/{GetTensor()->dims->data[2] * kRgbPixelBytes, kRgbPixelBytes}};
auto postprocessed_frame_buffer =
vision::FrameBuffer::Create({postprocessed_plane}, to_buffer_dimension,
vision::FrameBuffer::Format::kRGB,
vision::FrameBuffer::Orientation::kTopLeft);
return *postprocessed_frame_buffer.get();
}

} // namespace processor
} // namespace task
} // namespace tflite
70 changes: 70 additions & 0 deletions tensorflow_lite_support/cc/task/processor/image_postprocessor.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either exPostss or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_
#define TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_

#include "tensorflow_lite_support/cc/port/status_macros.h"
#include "tensorflow_lite_support/cc/task/processor/processor.h"
#include "tensorflow_lite_support/cc/task/vision/core/frame_buffer.h"
#include "tensorflow_lite_support/cc/task/vision/utils/frame_buffer_utils.h"
#include "tensorflow_lite_support/cc/task/core/task_utils.h"
#include "tensorflow_lite_support/cc/task/vision/utils/image_tensor_specs.h"

namespace tflite {
namespace task {
namespace processor {

// Process the associated output image tensor and convert it to a FrameBuffer.
// Requirement for the output tensor:
// (kTfLiteUInt8/kTfLiteFloat32)
// - image input of size `[batch x height x width x channels]`.
// - batch inference is not supported (`batch` is required to be 1).
// - only RGB inputs are supported (`channels` is required to be 3).
// - if type is kTfLiteFloat32, NormalizationOptions are required to be
// attached to the metadata for output de-normalization. Uses input metadata
// as fallback in case output metadata isn't provided.
class ImagePostprocessor : public Postprocessor {
public:
static tflite::support::StatusOr<std::unique_ptr<ImagePostprocessor>>
Create(core::TfLiteEngine* engine,
const int output_index,
const int input_index = -1);

// Processes the output tensor to an RGB of FrameBuffer type.
// If output tensor is of type kTfLiteFloat32, denormalize it into [0 - 255]
// via normalization parameters.
absl::StatusOr<vision::FrameBuffer> Postprocess();

private:
using Postprocessor::Postprocessor;

// Whether the model features quantized inference type (QUANTIZED_UINT8). This
// is currently detected by checking if the output tensor data type is uint8.
bool has_uint8_output_;

std::unique_ptr<vision::NormalizationOptions> options_;

absl::Status Init(const int input_index);

const vision::NormalizationOptions& GetNormalizationOptions() {
return *options_.get();
}
};
} // namespace processor
} // namespace task
} // namespace tflite

#endif // TENSORFLOW_LITE_SUPPORT_CC_TASK_PROCESSOR_IMAGE_POSTPROCESSOR_H_
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,9 @@ absl::Status ImagePreprocessor::Init(
const vision::FrameBufferUtils::ProcessEngine& process_engine) {
frame_buffer_utils_ = vision::FrameBufferUtils::Create(process_engine);

ASSIGN_OR_RETURN(input_specs_, vision::BuildInputImageTensorSpecs(
ASSIGN_OR_RETURN(input_specs_, vision::BuildImageTensorSpecs(
*engine_->interpreter(),
*engine_->metadata_extractor()));
*engine_->metadata_extractor(), true));

if (input_specs_.color_space != tflite::ColorSpaceType_RGB) {
return tflite::support::CreateStatusWithPayload(
Expand Down
Loading