Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add batch_compute_gradient_portion #312

Open
wants to merge 2 commits into
base: development
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions tensorflow_similarity/models/similarity_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,46 @@ class SimilarityModel(tf.keras.Model):
"""

def __init__(self, *args, **kwargs):
self.batch_compute_gradient_portion = float(kwargs.pop('batch_compute_gradient_portion', 1))
self.batch_random_permutation = bool(kwargs.pop('batch_random_permutation', False))

assert 0. < self.batch_compute_gradient_portion <= 1.
assert self.batch_random_permutation in [True, False]

super().__init__(*args, **kwargs)

def train_step(self, data):
x, y, sample_weight = tf.keras.utils.unpack_x_y_sample_weight(data)

if self.batch_random_permutation:
indices = tf.range(start=0, limit=tf.shape(x)[0], dtype=tf.int32)
shuffled_indices = tf.random.shuffle(indices)

x = tf.gather(x, shuffled_indices)
y = tf.gather(y, shuffled_indices)
if sample_weight is not None:
sample_weight = tf.gather(sample_weight, shuffled_indices)

l = tf.cast(tf.shape(x)[0], tf.float32)
k = tf.cast(self.batch_compute_gradient_portion * l, tf.int32)

# Run forward pass.
y_pred_without_gradient = self(x[k:], training=True)

with tf.GradientTape() as tape:
y_pred_with_gradient = self(x[:k], training=True)

y_pred = tf.concat([y_pred_with_gradient, y_pred_without_gradient], axis=0)

loss = self.compute_loss(x, y, y_pred, sample_weight)

self._validate_target_and_loss(y, loss)

# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)

return self.compute_metrics(x, y, y_pred, sample_weight)

def compile(
self,
optimizer: Optimizer | str | Mapping | Sequence = "rmsprop",
Expand Down