A pipeline parallel training script for diffusion models.
Currently supports SDXL, Flux, LTX-Video, and HunyuanVideo.
Work in progress and highly experimental. It is unstable and not well tested. Things might not work right.
- Pipeline parallelism, for training models larger than can fit on a single GPU
- Full fine tune support for:
- Flux
- LoRA support for:
- SDXL, Flux, LTX-Video, HunyuanVideo
- Useful metrics logged to Tensorboard
- Compute metrics on a held-out eval set, for measuring generalization
- Training state checkpointing and resuming from checkpoint
- Efficient multi-process, multi-GPU pre-caching of latents and text embeddings
- Easily add support for new models by implementing a single subclass
- 2025-01-20
- Properly support training Flex.1-alpha.
- Make sure to set
bypass_guidance_embedding=true
in the model config. You can look at the example config file.
- 2025-01-17
- For HunyuanVideo VAE when loaded via the
vae_path
option, fixed incorrect tiling sample size. The training loss is now moderately lower overall. Quality of trained LoRAs should be improved, but the improvement is likely minor. - You should update any cached latents made before this change. Delete the cache directory inside the dataset directories, or run the training script with the
--regenerate_cache
command line option.
- For HunyuanVideo VAE when loaded via the
- 2025-01-13
- Basic SDXL support. LoRA only. Many options present in other training scripts are not implemented. If you want more features added, PRs are welcome.
It will be difficult or impossible to make training work on native Windows. This is because Deepspeed only has partial Windows support. Deepspeed is a hard requirement because the entire training script is built around Deepspeed pipeline parallelism. However, it will work on Windows Subsystem for Linux, specifically WSL 2. If you must use Windows I recommend trying WSL 2.
Clone the repository:
git clone --recurse-submodules https://github.com/tdrussell/diffusion-pipe
If you alread cloned it and forgot to do --recurse-submodules:
git submodule init
git submodule update
Install Miniconda: https://docs.anaconda.com/miniconda/
Create the environment:
conda create -n diffusion-pipe python=3.12
conda activate diffusion-pipe
Install nvcc: https://anaconda.org/nvidia/cuda-nvcc. Probably try to make it match the CUDA version that was installed on your system with PyTorch.
Install the dependencies:
pip install -r requirements.txt
A dataset consists of one or more directories containing image or video files, and corresponding captions. You can mix images and videos in the same directory, but it's probably a good idea to separate them in case you need to specify certain settings on a per-directory basis. Caption files should be .txt files with the same base name as the corresponding media file, e.g. image1.png should have caption file image1.txt in the same directory. If a media file doesn't have a matching caption file, a warning is printed, but training will proceed with an empty caption.
For images, any image format that can be loaded by Pillow should work. For videos, any format that can be loaded by ImageIO should work. Note that this means WebP videos are not supported, because ImageIO can't load multi-frame WebPs.
Start by reading through the config files in the examples directory. Almost everything is commented, explaining what each setting does.
Once you've familiarized yourself with the config file format, go ahead and make a copy and edit to your liking. At minimum, change all the paths to conform to your setup, including the paths in the dataset config file.
Launch training like this:
NCCL_P2P_DISABLE="1" NCCL_IB_DISABLE="1" deepspeed --num_gpus=1 train.py --deepspeed --config examples/hunyuan_video.toml
RTX 4000 series needs those 2 environment variables set. Other GPUs may not need them. You can try without them, Deepspeed will complain if it's wrong.
If you enabled checkpointing, you can resume training from the latest checkpoint by simply re-running the exact same command but with the --resume_from_checkpoint
flag.
A new directory will be created in output_dir
for each training run. This contains the checkpoints, saved models, and Tensorboard metrics. Saved models/LoRAs will be in directories named like epoch1, epoch2, etc. Deepspeed checkpoints are in directories named like global_step1234. These checkpoints contain all training state, including weights, optimizer, and dataloader state, but can't be used directly for inference. The saved model directory will have the safetensors weights, PEFT adapter config JSON, as well as the diffusion-pipe config file for easier tracking of training run settings.
Flux doesn't currently support training a LoRA on a fp8 base model (if you want this, PRs are welcome :) ). So you need to use a >24GB GPU, or use pipeline_stages=2 or higher with multiple 24GB cards. With four 24GB GPUs, you can even full finetune Flux with the right techniques (see the train.py code about gradient release and the custom AdamW8bitKahan optimizer).
HunyuanVideo supports fp8 transformer. The example config file will train a HunyuanVideo LoRA, on images only, in well under 24GB of VRAM. You can probably bump the resolution to 1024x1024 or higher.
Video uses A LOT more memory. I was able to train a rank 32 LoRA on 512x512x33 sized videos in just under 23GB VRAM usage. Pipeline parallelism will help a bit if you have multiple GPUs, since the model weights will be further divided among them (but it doesn't help with the huge activation memory use of videos). Long term I want to eventually implement ring attention and/or Deepspeed Ulysses for parallelizing the sequence dimension across GPUs, which should greatly help for training on videos.
I've barely done any training on LTX-Video. The model is much lighter than Hunyuan, and the latent space more compressed, so it uses less memory. You can train loras even on video at a reasonable length (I forgot exactly what it was) on 24GB.
This code uses hybrid data- and pipeline-parallelism. Set the --num_gpus
flag appropriately for your setup. Set pipeline_stages
in the config file to control the degree of pipeline parallelism. Then the data parallelism degree will automatically be set to use all GPUs (number of GPUs must be divisible by pipeline_stages). For example, with 4 GPUs and pipeline_stages=2, you will run two instances of the model, each divided across two GPUs.
Latents and text embeddings are cached to disk before training happens. This way, the VAE and text encoders don't need to be kept loaded during training. The Huggingface Datasets library is used for all the caching. Cache files are reused between training runs if they exist. All cache files are written into a directory named "cache" inside each dataset directory.
This caching also means that training LoRAs for text encoders is not currently supported.
Two flags are relevant for caching. --cache_only
does the caching flow, then exits without training anything. --regenerate_cache
forces cache regeneration. If you edit the dataset in-place (like changing a caption), you need to force regenerate the cache (or delete the cache dir) for the changes to be picked up.
LoRAs use Diffusers to save when possible. Where Diffusers does not have official LoRA support for a model, the state_dict format follows the typical Diffusers convention: the weight keys are formatted as PEFT does, and prefixed with the attribute name of the model on the Diffusers pipeline object (e.g. prefixed with "transformer.").
SDXL is an exception; the LoRAs are saved in Kohya sd-scripts format.
You can check out my qlora-pipe project, which is basically the same thing as this but for LLMs.