Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

improve README examples of stats/base/dists/poisson namespace #1734

Merged
merged 3 commits into from
Mar 7, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 34 additions & 2 deletions lib/node_modules/@stdlib/stats/base/dists/poisson/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,10 +111,42 @@ y = dist.pmf( 2.3 );
<!-- eslint no-undef: "error" -->

```javascript
var objectKeys = require( '@stdlib/utils/keys' );
var poisson = require( '@stdlib/stats/base/dists/poisson' );

console.log( objectKeys( poisson ) );
/*
* Let's take a customer service center example: average rate of customer inquiries is 3 per hour.
* This situation can be modeled using a Poisson distribution with λ = 3
*/

var lambda = 3;

// Mean can be used to calculate the average number of inquiries per hour:
console.log( poisson.mean( lambda ) );
// => 3

// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean:
console.log( poisson.stdev( lambda ) );
// => ~1.7321

// Variance can be used to calculate the variability of the number of inquiries:
console.log( poisson.variance( lambda ) );
// => 3

// PMF can be used to calculate specific number of inquiries in an hour:
console.log( poisson.pmf( 4, lambda ) );
// => ~0.1680

// CDF can be used to calculate probability upto certain number of inquiries in an hour
Planeshifter marked this conversation as resolved.
Show resolved Hide resolved
console.log( poisson.cdf( 2, lambda ) );
// => ~0.4232

// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed.
console.log( poisson.quantile( 0.8, lambda ) );
// => 4

// MGF can be used for more advanced statistical analyses and generating moments of the distribution.
console.log( poisson.mgf( 1.0, lambda ) );
// => ~173.2690
```

</section>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,39 @@

'use strict';

var objectKeys = require( '@stdlib/utils/keys' );
var poisson = require( './../lib' );

console.log( objectKeys( poisson ) );
/*
* Let's take a customer service center example: average rate of customer inquiries is 3 per hour.
* This situation can be modeled using a Poisson distribution with λ = 3
*/

var lambda = 3;

// Mean can be used to calculate the average number of inquiries per hour:
console.log( poisson.mean( lambda ) );
// => 3

// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean:
console.log( poisson.stdev( lambda ) );
// => ~1.7321

// Variance can be used to calculate the variability of the number of inquiries:
console.log( poisson.variance( lambda ) );
// => 3

// PMF can be used to calculate specific number of inquiries in an hour:
console.log( poisson.pmf( 4, lambda ) );
// => ~0.1680

// CDF can be used to calculate probability upto certain number of inquiries in an hour:
console.log( poisson.cdf( 2, lambda ) );
// => ~0.4232

// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed.
console.log( poisson.quantile( 0.8, lambda ) );
// => 4

// MGF can be used for more advanced statistical analyses and generating moments of the distribution.
console.log( poisson.mgf( 1.0, lambda ) );
// => ~173.2690
Loading