-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update and rename anderson-model to anderson-model.md
Added some text on the SIAM model
- Loading branch information
1 parent
10c9898
commit 7d6661c
Showing
2 changed files
with
119 additions
and
1 deletion.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# The Anderson Impurity Model | ||
|
||
We use the fermionic chain mapping proposed in [1] to perform tensor network simulations of the Single Impurity Anderson Model (SIAM). The SIAM Hamiltonian is defined as: | ||
\begin{equation} | ||
\hat H^\text{SIAM} = \hat H_\text{loc} + \hat H_\text{hyb} + \hat H_\text{cond} = \overbrace{\epsilon_d \hat d^\dagger \hat d}^{\hat H_\text{loc}} + \underbrace{\sum_{k} V_k \Big( \hat d^\dagger \hat c_k + \hat c_k^\dagger \hat d \Big)}_{H_\text{hyb}} + \underbrace{\sum_k \epsilon_k \hat c_k^\dagger \hat c_k}_{H_I^\text{chain}}. | ||
\end{equation} | ||
All of the operators obey to the usual fermionic anti-commutation relations: $\{\hat c_i, \hat c_j^\dagger \} = \delta_{ij}$, $\{\hat c_i, \hat c_j \} =\{\hat c_i^\dagger, \hat c_j^\dagger \} =0$ $\forall i,j$. The chain mapping is based on a thermofield-like transformation [2], performed with fermions: ancillary fermionic operators $\hat c_{2k}$ are defined, one for each of the original fermionic modes $\hat c_{1k}$. A Bogoliubov transformation is then applied, so that two new fermionic modes $\hat f_{1k}$ and $\hat f_{2k}$ are defined as a linear combination of $\hat c_{1k}$ and $\hat c_{2k}$. Two chains are defined: the chain labelled $1$ for the empty modes, the chain labelled $2$ for the filled modes. | ||
The following relations are used to define the functions equivalent to the spectral density of the bosonic case, one for each chain: | ||
\begin{equation} | ||
\begin{split} | ||
&V_{1k} = V_{k} \sin \theta_k = \sqrt{\frac{1}{e^{\beta \epsilon_k}+1}} \\ | ||
&V_{2k} = V_{k} \cos \theta_k = \sqrt{\frac{1}{e^{-\beta \epsilon_k}+1}}, | ||
\end{split} | ||
\end{equation} | ||
where we choose the spectral function that characterizes the fermionic bath to be: $V_k= \sqrt{1-k^2}$, and we define the dispersion relation as: $e_k = k$, that is, a linear dispersion relation with propagation speed equal to $1$. This latter choice corresponds to a model of metals (gapless energy spectrum). We select a filled state as the initial state of the defect. | ||
Using the mapping proposed in [1], the chain Hamiltonian becomes: | ||
\begin{equation} | ||
\begin{split} | ||
\hat H^\text{chain} = \hat H_\text{loc} &+ \sum_{i = \{1,2\}}\bigg[ J_{i,0} \Big(\hat d^\dagger \hat a_{i,0} + \hat d \hat a_{i,0}^\dagger \Big) + \\ &+ \sum_{n=1}^\infty \Big( J_{i,n} \hat a_{i,n}^\dagger \hat a_{i,n-1} + J_{i,n} \hat a_{i,n-1}^\dagger \hat a_{i,n} \Big) + \sum_{n=0}^\infty E_{i,n} \hat a_{i,n}^\dagger \hat a_{i,n} \bigg], | ||
\end{split} | ||
\end{equation} | ||
where the $J_{i,n}$ coefficients are the couplings between the chain sites and the $E_{i,n}$ coefficients are the energies associated to each chain site. Clearly, the interactions are between nearest neighbors. This, combined with the fact that the fermions in our model are spinless, enables a straightforward mapping into fermionic operators of the bosonic creation and annihilation operators, that on their part obey to the bosonic commutation relations: $[\hat b_i, \hat b_j^\dagger] = \delta_{ij}$, $[\hat b_i, \hat b_j] =[\hat b_i^\dagger, \hat b_j^\dagger] =0$ $\forall i,j$. The mapping derived from Jordan-Wigner transformations for spinless fermions is: | ||
\begin{equation} | ||
\hat a_{i}^\dagger \hat a_{i+1} + \hat a_{i+1}^\dagger \hat a_{i} = \hat b_{i}^\dagger \hat b_{i+1} + \hat b_{i+1}^\dagger \hat b_{i}. | ||
\end{equation} | ||
|
||
|
||
## Double chain mapping | ||
|
||
The corresponding MPO representation is: | ||
\begin{equation} | ||
\begin{split} | ||
& | ||
\begin{bmatrix} | ||
\hat{\mathbb I} & J_{2,N} \hat b_{2,N}^\dagger & J_{2,N} \hat b_{2,N} & E_{2,N} \hat b_{2,N}^\dagger \hat b_{2,N} | ||
\end{bmatrix}\cdot ... \cdot | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & J_{2,0} \hat b_{2,0}^\dagger & J_{2,0} \hat b_{2,0} & E_{2,0} \hat b_{2,0}^\dagger \hat b_{2,0}\\ | ||
0 &0 & 0 & \hat b_{2,0} \\ | ||
0 &0 & 0 & \hat b_{2,0}^\dagger \\ | ||
0 &0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot \\ \cdot & | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & \hat d^\dagger & \hat d & \epsilon_d \hat d^\dagger \hat d\\ | ||
0 &0 & 0 & \hat d \\ | ||
0 &0 & 0 & \hat d^\dagger \\ | ||
0 &0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & \hat b_{1,0}^\dagger & \hat b_{1,0} & E_{1,0} \hat b_{1,0}^\dagger \hat b_{1,0}\\ | ||
0 &0 & 0 & \hat J_{1,0}b_{1,0} \\ | ||
0 &0 & 0 & \hat J_{1,0}b_{1,0}^\dagger \\ | ||
0 &0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot ... \cdot | ||
\begin{bmatrix} | ||
E_{2,N} \hat b_{2,N}^\dagger \hat b_{2,N} \\ J_{2,N} \hat b_{2,N} \\ J_{2,N} \hat b_{2,N}^\dagger \\ \hat{\mathbb I} | ||
\end{bmatrix} | ||
\end{split} | ||
\end{equation} | ||
|
||
The system starts from a filled state, the chain starts as in the Fermi sea. | ||
|
||
## Interleaved chain mapping | ||
|
||
The drawback of such a representation though, is that the particle-hole pairs are spatially separated in the MPS, creating correlations and therefore leading to a dramatic increase in the bond dimensions. This is why Kohn and Santoro propose an interleaved geometry, the advantages of which are thoroughly explained in \cite{Kohn_Santoro_2021b}. Exploiting the interleaved representation, the interaction comes to be between next-nearest neighbors: a string operator appears in the Jordan-Wigner transformation from bosons to fermions: | ||
\begin{equation} | ||
\hat a_{i}^\dagger \hat a_{i+2} + \hat a_{i+2}^\dagger \hat a_{i} = \hat b_{i}^\dagger \hat F_{i+1} \hat b_{i+2} + \hat b_{i} \hat F_{i+1} \hat b_{i+2}^\dagger, | ||
\end{equation} | ||
where the string operator $\hat F_i$ is defined as: $\hat F_i = (-1)^{\hat n_i} = \hat{\mathbb I} -2 \hat n_i = \hat{\mathbb I}-2 \hat b_i^\dagger \hat b_i$. It is possible to find the analytical form also for MPOs with long range interaction \cite{mpo}. In the case of next-nearest neighbors interactions between spinless fermions, the MPO representation will require a bond dimension $\chi=6$. We explicitly write it as: | ||
\begin{equation} | ||
\begin{split} | ||
& | ||
\begin{bmatrix} | ||
\hat{\mathbb I} & \hat d & \hat d^\dagger & 0 & 0 & E_{d} \hat d^\dagger \hat d | ||
\end{bmatrix}\cdot | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & \hat b_{2,0} & \hat b_{2,0}^\dagger & 0 & 0 & E_{2,0} \hat b_{2,0}^\dagger \hat b_{2,0}\\ | ||
0 &0 & 0 & \hat{F}_{2,0} & 0 & J_{2,0} \hat b_{2,0}^\dagger \\ | ||
0 &0 & 0 & 0 & \hat{F}_{2,0} & J_{2,0} \hat b_{2,0} \\ | ||
0 &0 & 0 & 0 & 0 & 0\\ | ||
0 &0 & 0 & 0 & 0 & 0 \\ | ||
0 &0 & 0 & 0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot \\ \cdot & | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & \hat b_{1,0} & \hat b_{1,0}^\dagger & 0 & 0 & E_{1,0} \hat b_{1,0}^\dagger \hat b_{1,0}\\ | ||
0 &0 & 0 & \hat{ F}_{1,0} & 0 & 0 \\ | ||
0 &0 & 0 & 0 & \hat{F}_{1,0} & 0 \\ | ||
0 &0 & 0 & 0 & 0 & J_{1,0} \hat b_{1,0}^\dagger \\ | ||
0 &0 & 0 & 0 & 0 & J_{1,0} \hat b_{1,0} \\ | ||
0 &0 & 0 & 0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot ... \cdot | ||
\begin{bmatrix} | ||
\hat{ \mathbb I} & \hat b_{2,N} & \hat b_{2,N}^\dagger & 0 & 0 & E_{2,N} \hat b_{2,N}^\dagger \hat b_{2,N}\\ | ||
0 &0 & 0 & \hat{F}_{2,N} & 0 & 0 \\ | ||
0 &0 & 0 & 0 & \hat{F}_{2,N} & 0 \\ | ||
0 &0 & 0 & 0 & 0 & J_{2,N} \hat b_{2,N}^\dagger \\ | ||
0 &0 & 0 & 0 & 0 & J_{2,N} \hat b_{2,N} \\ | ||
0 &0 & 0 & 0 & 0 & \hat{\mathbb I} | ||
\end{bmatrix} | ||
\cdot \\ \cdot & | ||
\begin{bmatrix} | ||
E_{1,N} \hat b_{1,N}^\dagger \hat b_{1,N} \\ 0 \\0 \\ J_{1,N} \hat b_{1,N}^\dagger \\ J_{1,N} \hat b_{1,N} \\ \hat{\mathbb I} | ||
\end{bmatrix} | ||
\end{split} | ||
\end{equation} | ||
________________ | ||
### References | ||
|
||
[1] Lucas Kohn and Giuseppe E. Santoro. Efficient mapping for anderson impurity problems with matrix product states. Physical Review B, 104(1):014303, Jul 2021. arXiv: [2012.01424](https://arxiv.org/abs/2012.01424). | ||
|
||
|
||
[2] Ines de Vega and Mari-Carmen Banuls. Thermofield-based chain mapping approach for open quantum systems. Physical Review A, 92(5):052116, Nov 2015. arXiv:[1504.07228](https://arxiv.org/abs/1504.07228). | ||
|
||
[3] L. Kohn and G. E. Santoro. Quenching the anderson impurity model at finite temperature: Entanglement and bath dynamics using matrix product states. arXiv:2107.02807 [cond-mat, physics:quant-ph], Jul 2021. arXiv: [2107.02807](https://arxiv.org/abs/2107.02807) |