Skip to content

The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE, idefix or spdesign.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

sagebiej/simulatedce

Folders and files

NameName
Last commit message
Last commit date

Latest commit

785b39d · Jan 3, 2025

History

66 Commits
Jun 23, 2024
Jun 22, 2024
Jan 3, 2025
Jan 3, 2025
Jun 23, 2024
Feb 20, 2024
Feb 7, 2024
Feb 11, 2024
Jun 21, 2024
Feb 11, 2024
Dec 19, 2023
Jun 23, 2024
Dec 19, 2023
Dec 19, 2023
Mar 6, 2024
Jun 23, 2024
Jan 3, 2025
Jan 3, 2025

Repository files navigation

simulateDCE

The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE, idefix or spdesign. You have to store the design file(s) in a subfolder and need to specify certain parameters and the utility functions for the data generating process. The package is useful for:

  1. Test different designs in terms of statistical power, efficiency and unbiasedness

  2. To test the effects of deviations from RUM, e.g. heuristics, on model performance for different designs.

  3. In teaching, using simulated data is useful, if you want to know the data generating process. It helps to demonstrate Maximum likelihood and choice models, knowing exactly what you should expect.

  4. You can use simulation in pre-registration to justify your sample size and design choice.

  5. Before data collection, you can use simulated data to estimate the models you plan to use in the actual analysis. You can thus make sure, you can estimate all effects for given sample sizes.

Installation

You can install simulateDCE from github. You need to install the devtools package first. The current version is alpha and there is no version on cran:

install.packages("devtools")
devtools::install_git('https://github.com/sagebiej/simulateDCE', ref = "main")

For the latest development version use this:

install.packages("devtools")
devtools::install_git('https://github.com/sagebiej/simulateDCE', ref = "devel")

Example

This is a basic example for a simulation:

rm(list=ls())
library(simulateDCE)
library(rlang)
library(formula.tools)
#> 
#> Attaching package: 'formula.tools'
#> The following object is masked from 'package:rlang':
#> 
#>     env


designpath<- system.file("extdata","SE_DRIVE" ,package = "simulateDCE")

resps =120  # number of respondents
nosim= 400 # number of simulations to run (about 500 is minimum)






# bcoeff <- list(
#   bpreis = -0.036,
#   blade  = -0.034,
#   bwarte = -0.049)


decisiongroups=c(0,0.7,1)

# wrong parameters

# place b coefficients into an r list:
bcoeff  = list(
  bpreis = -0.01,
  blade = -0.07,
  bwarte = 0.02)

manipulations = list(alt1.x2=     expr(alt1.x2/10),
                     alt1.x3=     expr(alt1.x3/10),
                     alt2.x2=     expr(alt2.x2/10),
                     alt2.x3=     expr(alt2.x3/10)
)


#place your utility functions here
ul<-list( u1 =

           list(
             v1 =V.1~  bpreis * alt1.x1 + blade*alt1.x2 + bwarte*alt1.x3   ,
             v2 =V.2~  bpreis * alt2.x1 + blade*alt2.x2 + bwarte*alt2.x3
           )

         ,
         u2 = list(  v1 =V.1~  bpreis * alt1.x1    ,
                     v2 =V.2~  bpreis * alt2.x1)

)


destype="ngene"

sedrive <- sim_all(nosim = nosim, resps=resps, destype = destype,
                   designpath = designpath, u=ul, bcoeff = bcoeff, decisiongroups = decisiongroups)
#> 'simple' is deprecated and will be removed in the future. Use 'exact' instead.
#> bcoeff_lookup already exists; skipping modification.
#> Utility function used in simulation, ie the true utility: 
#> 
#> $u1
#> $u1$v1
#> V.1 ~ bpreis * alt1.x1 + blade * alt1.x2 + bwarte * alt1.x3
#> <environment: 0x5cc5fbecc2e0>
#> 
#> $u1$v2
#> V.2 ~ bpreis * alt2.x1 + blade * alt2.x2 + bwarte * alt2.x3
#> <environment: 0x5cc5fbf0ffd8>
#> 
#> 
#> $u2
#> $u2$v1
#> V.1 ~ bpreis * alt1.x1
#> <environment: 0x5cc5fbf32890>
#> 
#> $u2$v2
#> V.2 ~ bpreis * alt2.x1
#> <environment: 0x5cc5fbf54428>
#> 'destype' is deprecated. Please use 'designtype' instead.
#> New names:
#> • `Choice situation` -> `Choice.situation`
#> • `` -> `...10`
#>  
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5346621  0.7318508  -1.0846621 -11.868149      1
#> 2     1  -0.95  -2.35  0.5773936 -0.7811993  -0.3726064  -3.131199      1
#> 3     1  -6.20  -2.30  1.3382771  0.1158697  -4.8617229  -2.184130      2
#> 4     1 -13.90  -2.55  1.0026198  0.9662150 -12.8973802  -1.583785      2
#> 5     1 -14.40  -5.80  0.4685361 -0.4860094 -13.9314639  -6.286009      2
#> 6     1  -3.60  -1.70  2.5243715  0.6438044  -1.0756285  -1.056196      2
#> 
#>  
#>  Transformed utility function (type: simple ):
#> [1] "U_1 = @bpreis * $alt1_x1 + @blade * $alt1_x2 + @bwarte * $alt1_x3 ;U_2 = @bpreis * $alt2_x1 + @blade * $alt2_x2 + @bwarte * $alt2_x3 ;"
#> This is Run number  1 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1       e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.0480412 1.0658687   1.4980412 -11.5341313      1
#> 2     1  -0.95  -2.35  1.6458423 3.0029775   0.6958423   0.6529775      1
#> 3     1  -6.20  -2.30  0.8064037 1.7156233  -5.3935963  -0.5843767      2
#> 4     1 -13.90  -2.55 -0.9656518 0.7281514 -14.8656518  -1.8218486      2
#> 5     1 -14.40  -5.80 -0.8679570 3.8650136 -15.2679570  -1.9349864      2
#> 6     1  -3.60  -1.70  0.7468481 1.9040151  -2.8531519   0.2040151      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6900 -38650   7050 
#> initial  value 998.131940 
#> iter   2 value 814.051264
#> iter   3 value 803.513852
#> iter   4 value 803.277976
#> iter   5 value 766.362532
#> iter   6 value 757.804164
#> iter   7 value 756.391651
#> iter   8 value 756.360304
#> iter   9 value 756.360241
#> iter  10 value 756.360224
#> iter  10 value 756.360214
#> iter  10 value 756.360206
#> final  value 756.360206 
#> converged
#> This is Run number  2 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.95903510  1.7469021  -1.5090351 -10.8530979      1
#> 2     1  -0.95  -2.35  0.48567293  1.3550837  -0.4643271  -0.9949163      1
#> 3     1  -6.20  -2.30 -0.07062326 -0.3819651  -6.2706233  -2.6819651      2
#> 4     1 -13.90  -2.55 -0.27359542  1.7458482 -14.1735954  -0.8041518      2
#> 5     1 -14.40  -5.80  0.62747982  1.1230906 -13.7725202  -4.6769094      2
#> 6     1  -3.60  -1.70  5.51924738  0.5975311   1.9192474  -1.1024689      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7320 -40200   5325 
#> initial  value 998.131940 
#> iter   2 value 798.413557
#> iter   3 value 790.367792
#> iter   4 value 788.829313
#> iter   5 value 756.684783
#> iter   6 value 747.942494
#> iter   7 value 746.186623
#> iter   8 value 746.134114
#> iter   9 value 746.133922
#> iter  10 value 746.133904
#> iter  10 value 746.133904
#> iter  10 value 746.133894
#> final  value 746.133894 
#> converged
#> This is Run number  3 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.3494364 -1.2638437  -0.8994364 -13.8638437      1
#> 2     1  -0.95  -2.35 -1.0591545 -0.3654889  -2.0091545  -2.7154889      1
#> 3     1  -6.20  -2.30 -0.6391097 -1.0715919  -6.8391097  -3.3715919      2
#> 4     1 -13.90  -2.55  1.9630398 -0.7375982 -11.9369602  -3.2875982      2
#> 5     1 -14.40  -5.80 -0.7461610  0.5740361 -15.1461610  -5.2259639      2
#> 6     1  -3.60  -1.70  1.1724058  0.9519715  -2.4275942  -0.7480285      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -38275   7025 
#> initial  value 998.131940 
#> iter   2 value 820.132002
#> iter   3 value 808.671749
#> iter   4 value 807.589000
#> iter   5 value 769.808211
#> iter   6 value 761.347358
#> iter   7 value 759.964884
#> iter   8 value 759.935731
#> iter   9 value 759.935680
#> iter  10 value 759.935667
#> iter  10 value 759.935656
#> iter  10 value 759.935656
#> final  value 759.935656 
#> converged
#> This is Run number  4 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1651308  0.04473541  -0.38486924 -12.555265      1
#> 2     1  -0.95  -2.35  1.0457067 -0.56572294   0.09570666  -2.915723      1
#> 3     1  -6.20  -2.30  0.2653277  0.21907004  -5.93467227  -2.080930      2
#> 4     1 -13.90  -2.55 -0.4685129  0.47136596 -14.36851288  -2.078634      2
#> 5     1 -14.40  -5.80  1.5752600  2.73346135 -12.82473995  -3.066539      2
#> 6     1  -3.60  -1.70 -0.3584104  0.55026311  -3.95841043  -1.149737      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -39625   8000 
#> initial  value 998.131940 
#> iter   2 value 794.188083
#> iter   3 value 778.031063
#> iter   4 value 777.087469
#> iter   5 value 743.540679
#> iter   6 value 734.976004
#> iter   7 value 733.845920
#> iter   8 value 733.827251
#> iter   9 value 733.827233
#> iter   9 value 733.827230
#> iter   9 value 733.827220
#> final  value 733.827220 
#> converged
#> This is Run number  5 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5668505  1.9385048  -1.116850 -10.6614952      1
#> 2     1  -0.95  -2.35 -1.0846610  0.5273078  -2.034661  -1.8226922      2
#> 3     1  -6.20  -2.30 -1.1667192 -0.3741714  -7.366719  -2.6741714      2
#> 4     1 -13.90  -2.55 -0.1146248  1.0349357 -14.014625  -1.5150643      2
#> 5     1 -14.40  -5.80 -0.4668516  2.2256308 -14.866852  -3.5743692      2
#> 6     1  -3.60  -1.70  0.2743071  2.4364835  -3.325693   0.7364835      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -36600   5775 
#> initial  value 998.131940 
#> iter   2 value 849.190980
#> iter   3 value 842.712950
#> iter   4 value 841.936546
#> iter   5 value 799.442275
#> iter   6 value 791.541423
#> iter   7 value 789.904678
#> iter   8 value 789.870085
#> iter   9 value 789.869999
#> iter   9 value 789.869999
#> iter   9 value 789.869999
#> final  value 789.869999 
#> converged
#> This is Run number  6 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1867229 -1.3282405  -0.3632771 -13.92824045      1
#> 2     1  -0.95  -2.35 -0.7120267  0.4058905  -1.6620267  -1.94410949      1
#> 3     1  -6.20  -2.30  0.9499792  1.3408087  -5.2500208  -0.95919130      2
#> 4     1 -13.90  -2.55 -0.6068414 -0.2863894 -14.5068414  -2.83638939      2
#> 5     1 -14.40  -5.80  0.2791787  0.1775473 -14.1208213  -5.62245268      2
#> 6     1  -3.60  -1.70 -0.4503255  1.6392219  -4.0503255  -0.06077805      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -40050   6300 
#> initial  value 998.131940 
#> iter   2 value 797.254783
#> iter   3 value 784.067854
#> iter   4 value 781.033483
#> iter   5 value 748.988742
#> iter   6 value 740.229226
#> iter   7 value 738.865229
#> iter   8 value 738.831723
#> iter   9 value 738.831657
#> iter   9 value 738.831649
#> iter   9 value 738.831643
#> final  value 738.831643 
#> converged
#> This is Run number  7 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.21350661 -0.0899883  -0.3364934 -12.689988      1
#> 2     1  -0.95  -2.35  2.12381588 -0.2254029   1.1738159  -2.575403      1
#> 3     1  -6.20  -2.30  4.10025765  0.4750744  -2.0997424  -1.824926      2
#> 4     1 -13.90  -2.55 -0.41310328 -0.6352374 -14.3131033  -3.185237      2
#> 5     1 -14.40  -5.80  0.05799517 -1.3854798 -14.3420048  -7.185480      2
#> 6     1  -3.60  -1.70  2.15245815  0.5629682  -1.4475418  -1.137032      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5760 -37400   6900 
#> initial  value 998.131940 
#> iter   2 value 833.324198
#> iter   3 value 821.238217
#> iter   4 value 819.048965
#> iter   5 value 779.096282
#> iter   6 value 770.853182
#> iter   7 value 769.477617
#> iter   8 value 769.450544
#> iter   9 value 769.450502
#> iter   9 value 769.450491
#> iter   9 value 769.450486
#> final  value 769.450486 
#> converged
#> This is Run number  8 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5798834 -0.3211425   0.02988338 -12.9211425      1
#> 2     1  -0.95  -2.35 -0.6568726  2.9615102  -1.60687260   0.6115102      2
#> 3     1  -6.20  -2.30  1.0462290 -0.8025417  -5.15377097  -3.1025417      2
#> 4     1 -13.90  -2.55  1.9432565 -0.5925105 -11.95674349  -3.1425105      2
#> 5     1 -14.40  -5.80 -0.2125311 -0.5395650 -14.61253107  -6.3395650      2
#> 6     1  -3.60  -1.70  0.5850380  0.8600823  -3.01496199  -0.8399177      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6760 -39500   7725 
#> initial  value 998.131940 
#> iter   2 value 797.555745
#> iter   3 value 783.435479
#> iter   4 value 783.002682
#> iter   5 value 748.858861
#> iter   6 value 740.221327
#> iter   7 value 739.023456
#> iter   8 value 739.001304
#> iter   9 value 739.001293
#> iter   9 value 739.001288
#> iter  10 value 739.001265
#> iter  11 value 739.001253
#> iter  11 value 739.001253
#> iter  11 value 739.001250
#> final  value 739.001250 
#> converged
#> This is Run number  9 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1          e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.69241378 -0.027102867  -1.242414 -12.6271029      1
#> 2     1  -0.95  -2.35 -0.33240342  0.957319274  -1.282403  -1.3926807      1
#> 3     1  -6.20  -2.30 -0.02159452  0.523861864  -6.221595  -1.7761381      2
#> 4     1 -13.90  -2.55 -0.43976792  2.255627590 -14.339768  -0.2943724      2
#> 5     1 -14.40  -5.80  1.59548064  0.005022084 -12.804519  -5.7949779      2
#> 6     1  -3.60  -1.70  0.36964385 -0.070284512  -3.230356  -1.7702845      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -38925   7375 
#> initial  value 998.131940 
#> iter   2 value 808.805881
#> iter   3 value 794.383536
#> iter   4 value 792.492764
#> iter   5 value 756.940395
#> iter   6 value 748.397803
#> iter   7 value 747.136101
#> iter   8 value 747.111451
#> iter   9 value 747.111422
#> iter   9 value 747.111412
#> iter   9 value 747.111406
#> final  value 747.111406 
#> converged
#> This is Run number  10 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.55377101 -0.06400035  -1.1037710 -12.664000      1
#> 2     1  -0.95  -2.35  0.65046709  1.31960333  -0.2995329  -1.030397      1
#> 3     1  -6.20  -2.30 -0.08514854 -0.35122632  -6.2851485  -2.651226      2
#> 4     1 -13.90  -2.55 -0.24910236  0.41807233 -14.1491024  -2.131928      2
#> 5     1 -14.40  -5.80  1.44398692  0.61195541 -12.9560131  -5.188045      2
#> 6     1  -3.60  -1.70  1.29566396  0.41997169  -2.3043360  -1.280028      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7240 -39850   6400 
#> initial  value 998.131940 
#> iter   2 value 799.047238
#> iter   3 value 789.288368
#> iter   4 value 788.745320
#> iter   5 value 755.304582
#> iter   6 value 746.556906
#> iter   7 value 745.070645
#> iter   8 value 745.032618
#> iter   9 value 745.032529
#> iter  10 value 745.032514
#> iter  10 value 745.032507
#> iter  10 value 745.032499
#> final  value 745.032499 
#> converged
#> This is Run number  11 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8302687  0.6367215   0.2802687 -11.963278      1
#> 2     1  -0.95  -2.35  0.1713546 -0.6215377  -0.7786454  -2.971538      1
#> 3     1  -6.20  -2.30  0.2922556  0.0418291  -5.9077444  -2.258171      2
#> 4     1 -13.90  -2.55  1.1815540  0.6897143 -12.7184460  -1.860286      2
#> 5     1 -14.40  -5.80 -0.2580984  1.6449478 -14.6580984  -4.155052      2
#> 6     1  -3.60  -1.70  2.0032401  0.0826559  -1.5967599  -1.617344      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5560 -39250   7150 
#> initial  value 998.131940 
#> iter   2 value 805.365550
#> iter   3 value 787.032465
#> iter   4 value 782.361624
#> iter   5 value 748.443105
#> iter   6 value 739.857615
#> iter   7 value 738.659548
#> iter   8 value 738.636756
#> iter   9 value 738.636736
#> iter   9 value 738.636731
#> iter   9 value 738.636727
#> final  value 738.636727 
#> converged
#> This is Run number  12 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.9803801 -0.26153559  -1.5303801 -12.8615356      1
#> 2     1  -0.95  -2.35  1.7419333  0.07796661   0.7919333  -2.2720334      1
#> 3     1  -6.20  -2.30  1.4003382 -0.88584325  -4.7996618  -3.1858432      2
#> 4     1 -13.90  -2.55 -1.4346036 -0.76433179 -15.3346036  -3.3143318      2
#> 5     1 -14.40  -5.80 -0.6871762 -1.84393126 -15.0871762  -7.6439313      2
#> 6     1  -3.60  -1.70  3.1893690  1.48324819  -0.4106310  -0.2167518      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6700 -38575   6775 
#> initial  value 998.131940 
#> iter   2 value 816.882836
#> iter   3 value 806.574919
#> iter   4 value 805.890778
#> iter   5 value 768.813677
#> iter   6 value 760.282612
#> iter   7 value 758.832693
#> iter   8 value 758.799819
#> iter   9 value 758.799752
#> iter  10 value 758.799736
#> iter  10 value 758.799726
#> iter  10 value 758.799725
#> final  value 758.799725 
#> converged
#> This is Run number  13 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1991772  1.1511615  -0.74917718 -11.448838      1
#> 2     1  -0.95  -2.35  0.9329473  0.3775952  -0.01705267  -1.972405      1
#> 3     1  -6.20  -2.30  1.8494722 -0.5189996  -4.35052776  -2.819000      2
#> 4     1 -13.90  -2.55  0.1553253  0.6869012 -13.74467470  -1.863099      2
#> 5     1 -14.40  -5.80  2.9140428  2.1088163 -11.48595724  -3.691184      2
#> 6     1  -3.60  -1.70  0.9493834 -0.4533498  -2.65061659  -2.153350      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5720 -38225   7225 
#> initial  value 998.131940 
#> iter   2 value 819.997689
#> iter   3 value 805.307244
#> iter   4 value 802.513743
#> iter   5 value 765.124055
#> iter   6 value 756.700421
#> iter   7 value 755.405431
#> iter   8 value 755.380579
#> iter   9 value 755.380550
#> iter   9 value 755.380540
#> iter   9 value 755.380535
#> final  value 755.380535 
#> converged
#> This is Run number  14 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0226271  1.8022229  -1.5726271 -10.7977771      1
#> 2     1  -0.95  -2.35  0.2449677 -0.7119570  -0.7050323  -3.0619570      1
#> 3     1  -6.20  -2.30 -0.3483096 -0.8870686  -6.5483096  -3.1870686      2
#> 4     1 -13.90  -2.55 -0.3558228  1.8516659 -14.2558228  -0.6983341      2
#> 5     1 -14.40  -5.80  1.9414634  3.9030741 -12.4585366  -1.8969259      2
#> 6     1  -3.60  -1.70  0.8671413  2.5681117  -2.7328587   0.8681117      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6060 -38125   7250 
#> initial  value 998.131940 
#> iter   2 value 821.172714
#> iter   3 value 808.367696
#> iter   4 value 806.782637
#> iter   5 value 768.753533
#> iter   6 value 760.339769
#> iter   7 value 759.013804
#> iter   8 value 758.987644
#> iter   9 value 758.987607
#> iter  10 value 758.987595
#> iter  10 value 758.987585
#> iter  10 value 758.987580
#> final  value 758.987580 
#> converged
#> This is Run number  15 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6697426 -0.2212345  -1.2197426 -12.821234      1
#> 2     1  -0.95  -2.35  0.1329135 -0.1484477  -0.8170865  -2.498448      1
#> 3     1  -6.20  -2.30  1.8040782 -1.1926918  -4.3959218  -3.492692      2
#> 4     1 -13.90  -2.55 -0.2969303  0.4498545 -14.1969303  -2.100146      2
#> 5     1 -14.40  -5.80 -0.8939682  0.1640928 -15.2939682  -5.635907      2
#> 6     1  -3.60  -1.70 -0.9939891  0.3689768  -4.5939891  -1.331023      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6240 -37875   6650 
#> initial  value 998.131940 
#> iter   2 value 827.899993
#> iter   3 value 817.382899
#> iter   4 value 815.958442
#> iter   5 value 777.095544
#> iter   6 value 768.734927
#> iter   7 value 767.282448
#> iter   8 value 767.251137
#> iter   9 value 767.251077
#> iter   9 value 767.251076
#> iter   9 value 767.251076
#> final  value 767.251076 
#> converged
#> This is Run number  16 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4430095 -0.5300688  -0.9930095 -13.1300688      1
#> 2     1  -0.95  -2.35  3.5029252 -1.1477896   2.5529252  -3.4977896      1
#> 3     1  -6.20  -2.30  1.2878364  1.4547887  -4.9121636  -0.8452113      2
#> 4     1 -13.90  -2.55  2.0919139 -1.2793114 -11.8080861  -3.8293114      2
#> 5     1 -14.40  -5.80 -0.3452620 -0.5455779 -14.7452620  -6.3455779      2
#> 6     1  -3.60  -1.70 -1.0382948 -0.3328220  -4.6382948  -2.0328220      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5680 -38700   8425 
#> initial  value 998.131940 
#> iter   2 value 805.632321
#> iter   3 value 787.126143
#> iter   4 value 784.943829
#> iter   5 value 749.005847
#> iter   6 value 740.652192
#> iter   7 value 739.522359
#> iter   8 value 739.506073
#> iter   9 value 739.506060
#> iter   9 value 739.506055
#> iter   9 value 739.506052
#> final  value 739.506052 
#> converged
#> This is Run number  17 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.10726253  0.1562533   0.5572625 -12.4437467      1
#> 2     1  -0.95  -2.35 -1.03723690  2.4601367  -1.9872369   0.1101367      2
#> 3     1  -6.20  -2.30  0.33340273  0.2966318  -5.8665973  -2.0033682      2
#> 4     1 -13.90  -2.55  0.47342490  1.1619897 -13.4265751  -1.3880103      2
#> 5     1 -14.40  -5.80 -0.04790816 -0.9262372 -14.4479082  -6.7262372      2
#> 6     1  -3.60  -1.70 -0.25237807  0.6792071  -3.8523781  -1.0207929      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6060 -39525   8600 
#> initial  value 998.131940 
#> iter   2 value 791.960827
#> iter   3 value 772.617019
#> iter   4 value 771.139777
#> iter   5 value 737.594100
#> iter   6 value 729.207147
#> iter   7 value 728.147911
#> iter   8 value 728.133621
#> iter   9 value 728.133602
#> iter   9 value 728.133596
#> iter   9 value 728.133596
#> final  value 728.133596 
#> converged
#> This is Run number  18 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.7412233  0.62578691   0.1912233 -11.974213      1
#> 2     1  -0.95  -2.35  0.3224486  0.83719236  -0.6275514  -1.512808      1
#> 3     1  -6.20  -2.30 -1.0891595 -0.07786002  -7.2891595  -2.377860      2
#> 4     1 -13.90  -2.55 -0.6999784  0.43833581 -14.5999784  -2.111664      2
#> 5     1 -14.40  -5.80 -0.9937733  0.84542868 -15.3937733  -4.954571      2
#> 6     1  -3.60  -1.70  0.4503231 -0.52201593  -3.1496769  -2.222016      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7360 -40025   5825 
#> initial  value 998.131940 
#> iter   2 value 798.921328
#> iter   3 value 790.485091
#> iter   4 value 789.657678
#> iter   5 value 756.737560
#> iter   6 value 747.986793
#> iter   7 value 746.352573
#> iter   8 value 746.307171
#> iter   9 value 746.307041
#> iter  10 value 746.307026
#> iter  10 value 746.307026
#> iter  10 value 746.307019
#> final  value 746.307019 
#> converged
#> This is Run number  19 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5742353  0.2599047  -1.12423532 -12.340095      1
#> 2     1  -0.95  -2.35  0.8716942  1.0253969  -0.07830585  -1.324603      1
#> 3     1  -6.20  -2.30  0.4024112 -0.1901571  -5.79758884  -2.490157      2
#> 4     1 -13.90  -2.55  1.1478203 -0.7324204 -12.75217966  -3.282420      2
#> 5     1 -14.40  -5.80  0.5179299  1.2628388 -13.88207015  -4.537161      2
#> 6     1  -3.60  -1.70  0.2990833 -0.4118175  -3.30091671  -2.111818      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5800 -40250   8050 
#> initial  value 998.131940 
#> iter   2 value 784.410953
#> iter   3 value 763.207399
#> iter   4 value 759.363723
#> iter   5 value 728.629462
#> iter   6 value 720.229731
#> iter   7 value 719.188904
#> iter   8 value 719.172593
#> iter   8 value 719.172586
#> final  value 719.172586 
#> converged
#> This is Run number  20 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1       e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.54093200 0.9146525   0.99093200 -11.6853475      1
#> 2     1  -0.95  -2.35  0.99359644 0.8103119   0.04359644  -1.5396881      1
#> 3     1  -6.20  -2.30 -0.05574717 3.6530462  -6.25574717   1.3530462      2
#> 4     1 -13.90  -2.55  1.14689252 0.3959909 -12.75310748  -2.1540091      2
#> 5     1 -14.40  -5.80 -0.29085079 0.6199654 -14.69085079  -5.1800346      2
#> 6     1  -3.60  -1.70 -0.57138927 1.2125393  -4.17138927  -0.4874607      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5940 -38500   6550 
#> initial  value 998.131940 
#> iter   2 value 819.663167
#> iter   3 value 806.484485
#> iter   4 value 803.481753
#> iter   5 value 766.853816
#> iter   6 value 758.331166
#> iter   7 value 756.931409
#> iter   8 value 756.900884
#> iter   9 value 756.900831
#> iter   9 value 756.900822
#> iter   9 value 756.900817
#> final  value 756.900817 
#> converged
#> This is Run number  21 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2           U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  3.1726579 -1.3164440   2.622657902 -13.9164440      1
#> 2     1  -0.95  -2.35  0.9532956  3.6710337   0.003295594   1.3210337      2
#> 3     1  -6.20  -2.30  0.6409443  0.4491905  -5.559055733  -1.8508095      2
#> 4     1 -13.90  -2.55 -0.3810352  2.1951681 -14.281035155  -0.3548319      2
#> 5     1 -14.40  -5.80  1.5795551 -0.3248330 -12.820444855  -6.1248330      2
#> 6     1  -3.60  -1.70 -0.4157202 -0.5185339  -4.015720176  -2.2185339      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6420 -39550   7375 
#> initial  value 998.131940 
#> iter   2 value 799.220577
#> iter   3 value 784.729741
#> iter   4 value 783.181163
#> iter   5 value 749.406678
#> iter   6 value 740.779257
#> iter   7 value 739.551151
#> iter   8 value 739.526731
#> iter   9 value 739.526702
#> iter   9 value 739.526693
#> iter   9 value 739.526686
#> final  value 739.526686 
#> converged
#> This is Run number  22 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.8175021 -0.35435672  -1.367502 -12.954357      1
#> 2     1  -0.95  -2.35 -0.1995796 -0.61567055  -1.149580  -2.965671      1
#> 3     1  -6.20  -2.30  0.7204438  0.23624759  -5.479556  -2.063752      2
#> 4     1 -13.90  -2.55  1.8926614 -0.02072729 -12.007339  -2.570727      2
#> 5     1 -14.40  -5.80 -0.2718300  0.18629880 -14.671830  -5.613701      2
#> 6     1  -3.60  -1.70 -0.6245241  0.21125305  -4.224524  -1.488747      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5600 -37200   7575 
#> initial  value 998.131940 
#> iter   2 value 832.190865
#> iter   3 value 818.820408
#> iter   4 value 816.918318
#> iter   5 value 776.346371
#> iter   6 value 768.166574
#> iter   7 value 766.883717
#> iter   8 value 766.861318
#> iter   9 value 766.861291
#> iter   9 value 766.861281
#> iter   9 value 766.861276
#> final  value 766.861276 
#> converged
#> This is Run number  23 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.23997973  1.6529340  -0.3100203 -10.947066      1
#> 2     1  -0.95  -2.35 -0.35775476 -1.0901106  -1.3077548  -3.440111      1
#> 3     1  -6.20  -2.30  0.05300973 -1.1033464  -6.1469903  -3.403346      2
#> 4     1 -13.90  -2.55  1.55715428  1.0464371 -12.3428457  -1.503563      2
#> 5     1 -14.40  -5.80  1.06540419  0.6167304 -13.3345958  -5.183270      2
#> 6     1  -3.60  -1.70 -0.29567605  0.3535731  -3.8956761  -1.346427      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5880 -39025   6950 
#> initial  value 998.131940 
#> iter   2 value 809.832251
#> iter   3 value 794.516541
#> iter   4 value 791.150581
#> iter   5 value 756.230383
#> iter   6 value 747.646775
#> iter   7 value 746.359738
#> iter   8 value 746.333251
#> iter   9 value 746.333218
#> iter   9 value 746.333210
#> iter   9 value 746.333205
#> final  value 746.333205 
#> converged
#> This is Run number  24 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5811512 -0.6668047  -1.131151 -13.2668047      1
#> 2     1  -0.95  -2.35  2.3536173 -1.0546874   1.403617  -3.4046874      1
#> 3     1  -6.20  -2.30 -1.0869926 -0.5082091  -7.286993  -2.8082091      2
#> 4     1 -13.90  -2.55  0.5573746  2.3065882 -13.342625  -0.2434118      2
#> 5     1 -14.40  -5.80 -0.5445224  0.0458446 -14.944522  -5.7541554      2
#> 6     1  -3.60  -1.70 -0.3383747 -0.7048156  -3.938375  -2.4048156      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38900   6875 
#> initial  value 998.131940 
#> iter   2 value 811.861737
#> iter   3 value 799.578196
#> iter   4 value 797.953502
#> iter   5 value 762.142990
#> iter   6 value 753.563423
#> iter   7 value 752.195332
#> iter   8 value 752.165387
#> iter   9 value 752.165337
#> iter  10 value 752.165325
#> iter  10 value 752.165317
#> iter  10 value 752.165317
#> final  value 752.165317 
#> converged
#> This is Run number  25 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.79506340  2.9684872   0.2450634 -9.6315128      1
#> 2     1  -0.95  -2.35  0.02059948  4.0962295  -0.9294005  1.7462295      2
#> 3     1  -6.20  -2.30 -0.89827309 -0.2988247  -7.0982731 -2.5988247      2
#> 4     1 -13.90  -2.55  1.85670394 -0.5479160 -12.0432961 -3.0979160      2
#> 5     1 -14.40  -5.80  0.33733135  0.2319431 -14.0626686 -5.5680569      2
#> 6     1  -3.60  -1.70  1.80807202  2.1504539  -1.7919280  0.4504539      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5800 -38200   6400 
#> initial  value 998.131940 
#> iter   2 value 824.772414
#> iter   3 value 811.610414
#> iter   4 value 808.317614
#> iter   5 value 770.861084
#> iter   6 value 762.384077
#> iter   7 value 760.960246
#> iter   8 value 760.929323
#> iter   9 value 760.929266
#> iter   9 value 760.929257
#> iter   9 value 760.929252
#> final  value 760.929252 
#> converged
#> This is Run number  26 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.61494977  0.7730959   0.06494977 -11.826904      1
#> 2     1  -0.95  -2.35  1.88643832  0.6808709   0.93643832  -1.669129      1
#> 3     1  -6.20  -2.30 -0.86961688 -0.1904128  -7.06961688  -2.490413      2
#> 4     1 -13.90  -2.55 -0.05374765  0.7616439 -13.95374765  -1.788356      2
#> 5     1 -14.40  -5.80  3.47362298  1.5059658 -10.92637702  -4.294034      2
#> 6     1  -3.60  -1.70  0.28917639 -1.3190910  -3.31082361  -3.019091      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6200 -38275   5925 
#> initial  value 998.131940 
#> iter   2 value 825.848063
#> iter   3 value 815.246076
#> iter   4 value 812.696404
#> iter   5 value 775.260391
#> iter   6 value 766.794316
#> iter   7 value 765.220969
#> iter   8 value 765.183547
#> iter   9 value 765.183455
#> iter  10 value 765.183442
#> iter  10 value 765.183442
#> iter  10 value 765.183438
#> final  value 765.183438 
#> converged
#> This is Run number  27 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.17428232 -0.5063131  -0.3757177 -13.1063131      1
#> 2     1  -0.95  -2.35  0.59503521  0.4532163  -0.3549648  -1.8967837      1
#> 3     1  -6.20  -2.30 -0.80878323  2.8184548  -7.0087832   0.5184548      2
#> 4     1 -13.90  -2.55  1.16638698 -1.1685989 -12.7336130  -3.7185989      2
#> 5     1 -14.40  -5.80  3.87828296 -0.5075608 -10.5217170  -6.3075608      2
#> 6     1  -3.60  -1.70  0.05482436  1.8947469  -3.5451756   0.1947469      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6540 -37525   6375 
#> initial  value 998.131940 
#> iter   2 value 833.922833
#> iter   3 value 825.513174
#> iter   4 value 824.798810
#> iter   5 value 784.717063
#> iter   6 value 776.469774
#> iter   7 value 774.919701
#> iter   8 value 774.885346
#> iter   9 value 774.885266
#> iter   9 value 774.885264
#> iter   9 value 774.885264
#> final  value 774.885264 
#> converged
#> This is Run number  28 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.009285943 0.99401803  -0.5592859 -11.6059820      1
#> 2     1  -0.95  -2.35  0.292396581 0.18369436  -0.6576034  -2.1663056      1
#> 3     1  -6.20  -2.30 -1.115241992 0.01880581  -7.3152420  -2.2811942      2
#> 4     1 -13.90  -2.55  2.386206195 2.16271800 -11.5137938  -0.3872820      2
#> 5     1 -14.40  -5.80  0.733583378 0.96497297 -13.6664166  -4.8350270      2
#> 6     1  -3.60  -1.70  0.401342416 0.96390485  -3.1986576  -0.7360952      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6080 -38750   8175 
#> initial  value 998.131940 
#> iter   2 value 806.438136
#> iter   3 value 790.250129
#> iter   4 value 789.046565
#> iter   5 value 752.928739
#> iter   6 value 744.477324
#> iter   7 value 743.317181
#> iter   8 value 743.298959
#> iter   9 value 743.298945
#> iter   9 value 743.298942
#> iter  10 value 743.298931
#> iter  10 value 743.298923
#> iter  10 value 743.298922
#> final  value 743.298922 
#> converged
#> This is Run number  29 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.7471286 -0.3855214   1.1971286 -12.9855214      1
#> 2     1  -0.95  -2.35  0.1612026  1.2885028  -0.7887974  -1.0614972      1
#> 3     1  -6.20  -2.30  3.1399183  0.7451406  -3.0600817  -1.5548594      2
#> 4     1 -13.90  -2.55  1.1562691  1.1418581 -12.7437309  -1.4081419      2
#> 5     1 -14.40  -5.80 -0.2553048 -0.4954830 -14.6553048  -6.2954830      2
#> 6     1  -3.60  -1.70  1.7257312  0.8319119  -1.8742688  -0.8680881      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5680 -36675   6825 
#> initial  value 998.131940 
#> iter   2 value 843.431492
#> iter   3 value 832.639176
#> iter   4 value 830.764674
#> iter   5 value 788.737420
#> iter   6 value 780.709120
#> iter   7 value 779.326526
#> iter   8 value 779.300299
#> iter   9 value 779.300257
#> iter   9 value 779.300256
#> iter   9 value 779.300256
#> final  value 779.300256 
#> converged
#> This is Run number  30 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4583561 -0.4276330  -1.008356 -13.027633      1
#> 2     1  -0.95  -2.35 -0.9055229 -0.1672029  -1.855523  -2.517203      1
#> 3     1  -6.20  -2.30  1.7038551  0.7256820  -4.496145  -1.574318      2
#> 4     1 -13.90  -2.55 -0.7621098 -0.4771581 -14.662110  -3.027158      2
#> 5     1 -14.40  -5.80 -0.3998774 -1.0933774 -14.799877  -6.893377      2
#> 6     1  -3.60  -1.70  1.6273573  0.1763657  -1.972643  -1.523634      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6180 -38075   6375 
#> initial  value 998.131940 
#> iter   2 value 826.535088
#> iter   3 value 815.752278
#> iter   4 value 813.745311
#> iter   5 value 775.608465
#> iter   6 value 767.196971
#> iter   7 value 765.709509
#> iter   8 value 765.676337
#> iter   9 value 765.676270
#> iter   9 value 765.676260
#> iter   9 value 765.676254
#> final  value 765.676254 
#> converged
#> This is Run number  31 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0695231  0.2012381  -1.619523 -12.3987619      1
#> 2     1  -0.95  -2.35 -0.3692137  1.7454102  -1.319214  -0.6045898      2
#> 3     1  -6.20  -2.30  0.9046795  1.4778487  -5.295320  -0.8221513      2
#> 4     1 -13.90  -2.55 -0.2933849  0.7417986 -14.193385  -1.8082014      2
#> 5     1 -14.40  -5.80 -0.6282223  1.8206628 -15.028222  -3.9793372      2
#> 6     1  -3.60  -1.70  0.7008495 -0.9524986  -2.899151  -2.6524986      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -37975   6875 
#> initial  value 998.131940 
#> iter   2 value 825.239839
#> iter   3 value 814.469941
#> iter   4 value 813.367835
#> iter   5 value 774.710702
#> iter   6 value 766.320084
#> iter   7 value 764.901373
#> iter   8 value 764.871231
#> iter   9 value 764.871175
#> iter  10 value 764.871161
#> iter  10 value 764.871151
#> iter  10 value 764.871146
#> final  value 764.871146 
#> converged
#> This is Run number  32 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.2923237 -0.34185310  -0.2576763 -12.94185310      1
#> 2     1  -0.95  -2.35  0.1778100  2.28439972  -0.7721900  -0.06560028      2
#> 3     1  -6.20  -2.30  4.6585126  0.50816742  -1.5414874  -1.79183258      1
#> 4     1 -13.90  -2.55  2.6096463  0.06879165 -11.2903537  -2.48120835      2
#> 5     1 -14.40  -5.80 -0.2451368 -0.42604177 -14.6451368  -6.22604177      2
#> 6     1  -3.60  -1.70  1.2610084 -0.99274356  -2.3389916  -2.69274356      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6520 -38150   5800 
#> initial  value 998.131940 
#> iter   2 value 827.981080
#> iter   3 value 819.282063
#> iter   4 value 817.639860
#> iter   5 value 779.580434
#> iter   6 value 771.185328
#> iter   7 value 769.529829
#> iter   8 value 769.489814
#> iter   9 value 769.489708
#> iter  10 value 769.489695
#> iter  10 value 769.489693
#> iter  10 value 769.489692
#> final  value 769.489692 
#> converged
#> This is Run number  33 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.7820398 -0.3618176  -1.332040 -12.9618176      1
#> 2     1  -0.95  -2.35 -0.2823878  0.4905537  -1.232388  -1.8594463      1
#> 3     1  -6.20  -2.30  0.6124959  0.2771269  -5.587504  -2.0228731      2
#> 4     1 -13.90  -2.55  1.1618612  0.4721477 -12.738139  -2.0778523      2
#> 5     1 -14.40  -5.80  2.9320682 -0.3157078 -11.467932  -6.1157078      2
#> 6     1  -3.60  -1.70 -0.5046445  2.4571157  -4.104644   0.7571157      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5980 -37900   6850 
#> initial  value 998.131940 
#> iter   2 value 826.616061
#> iter   3 value 814.587727
#> iter   4 value 812.582007
#> iter   5 value 773.985393
#> iter   6 value 765.615980
#> iter   7 value 764.226528
#> iter   8 value 764.197877
#> iter   9 value 764.197830
#> iter   9 value 764.197819
#> iter   9 value 764.197813
#> final  value 764.197813 
#> converged
#> This is Run number  34 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  1.35318374  1.71399735   0.8031837 -10.88600265      1
#> 2     1  -0.95  -2.35 -0.05992435 -0.10723221  -1.0099244  -2.45723221      1
#> 3     1  -6.20  -2.30  0.09335095 -1.19775312  -6.1066491  -3.49775312      2
#> 4     1 -13.90  -2.55 -0.59008289  0.74789339 -14.4900829  -1.80210661      2
#> 5     1 -14.40  -5.80  1.81945873  0.01755771 -12.5805413  -5.78244229      2
#> 6     1  -3.60  -1.70 -0.12606651  1.78929845  -3.7260665   0.08929845      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5920 -38325   7575 
#> initial  value 998.131940 
#> iter   2 value 816.457874
#> iter   3 value 801.948179
#> iter   4 value 800.077130
#> iter   5 value 762.770038
#> iter   6 value 754.342467
#> iter   7 value 753.083401
#> iter   8 value 753.060307
#> iter   9 value 753.060281
#> iter   9 value 753.060272
#> iter   9 value 753.060266
#> final  value 753.060266 
#> converged
#> This is Run number  35 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.14043048  1.39313651  -0.4095695 -11.2068635      1
#> 2     1  -0.95  -2.35 -0.73092421  2.68732915  -1.6809242   0.3373292      2
#> 3     1  -6.20  -2.30 -0.15294274  1.21610800  -6.3529427  -1.0838920      2
#> 4     1 -13.90  -2.55 -0.04897067  1.62698452 -13.9489707  -0.9230155      2
#> 5     1 -14.40  -5.80  1.84091168  0.11293400 -12.5590883  -5.6870660      2
#> 6     1  -3.60  -1.70 -0.72173644 -0.04155647  -4.3217364  -1.7415565      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5960 -38675   7275 
#> initial  value 998.131940 
#> iter   2 value 813.146036
#> iter   3 value 798.593452
#> iter   4 value 796.234509
#> iter   5 value 760.058109
#> iter   6 value 751.554155
#> iter   7 value 750.274208
#> iter   8 value 750.249141
#> iter   9 value 750.249111
#> iter   9 value 750.249101
#> iter   9 value 750.249096
#> final  value 750.249096 
#> converged
#> This is Run number  36 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.54236870  1.37120574  -1.092369 -11.228794      1
#> 2     1  -0.95  -2.35 -0.13553929 -1.50755110  -1.085539  -3.857551      1
#> 3     1  -6.20  -2.30 -0.46534926 -0.08382678  -6.665349  -2.383827      2
#> 4     1 -13.90  -2.55 -0.07478104  0.78998504 -13.974781  -1.760015      2
#> 5     1 -14.40  -5.80  0.62893248  0.12093493 -13.771068  -5.679065      2
#> 6     1  -3.60  -1.70 -0.47623471 -0.68165571  -4.076235  -2.381656      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6000 -37200   6375 
#> initial  value 998.131940 
#> iter   2 value 838.701786
#> iter   3 value 828.804108
#> iter   4 value 827.012125
#> iter   5 value 786.387129
#> iter   6 value 778.216387
#> iter   7 value 776.731959
#> iter   8 value 776.700938
#> iter   9 value 776.700877
#> iter   9 value 776.700876
#> iter   9 value 776.700876
#> final  value 776.700876 
#> converged
#> This is Run number  37 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.7042745  1.71020923   1.1542745 -10.8897908      1
#> 2     1  -0.95  -2.35  0.8188401  1.73055549  -0.1311599  -0.6194445      1
#> 3     1  -6.20  -2.30  0.8142049  0.61972236  -5.3857951  -1.6802776      2
#> 4     1 -13.90  -2.55  1.5539823  2.02942975 -12.3460177  -0.5205703      2
#> 5     1 -14.40  -5.80  0.2413219 -0.01021182 -14.1586781  -5.8102118      2
#> 6     1  -3.60  -1.70 -1.1351223  1.98439698  -4.7351223   0.2843970      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -38300   5875 
#> initial  value 998.131940 
#> iter   2 value 825.550793
#> iter   3 value 816.241328
#> iter   4 value 814.381273
#> iter   5 value 776.815424
#> iter   6 value 768.371424
#> iter   7 value 766.748122
#> iter   8 value 766.708831
#> iter   9 value 766.708730
#> iter  10 value 766.708718
#> iter  10 value 766.708715
#> iter  10 value 766.708711
#> final  value 766.708711 
#> converged
#> This is Run number  38 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.7138098 -0.6272689   0.1638098 -13.227269      1
#> 2     1  -0.95  -2.35  1.1214789 -0.3768925   0.1714789  -2.726892      1
#> 3     1  -6.20  -2.30 -0.7095841  0.6286292  -6.9095841  -1.671371      2
#> 4     1 -13.90  -2.55  0.6902177 -1.0113477 -13.2097823  -3.561348      2
#> 5     1 -14.40  -5.80  1.0391582 -0.3155666 -13.3608418  -6.115567      2
#> 6     1  -3.60  -1.70  4.6394236  0.6673716   1.0394236  -1.032628      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6240 -38325   6650 
#> initial  value 998.131940 
#> iter   2 value 821.529415
#> iter   3 value 810.144082
#> iter   4 value 808.364363
#> iter   5 value 770.894356
#> iter   6 value 762.425153
#> iter   7 value 760.993309
#> iter   8 value 760.961861
#> iter   9 value 760.961803
#> iter   9 value 760.961803
#> iter   9 value 760.961803
#> final  value 760.961803 
#> converged
#> This is Run number  39 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.78675832  0.06521298  -1.33675832 -12.5347870      1
#> 2     1  -0.95  -2.35  0.96785957  2.19000495   0.01785957  -0.1599950      1
#> 3     1  -6.20  -2.30 -1.04345527  0.19961485  -7.24345527  -2.1003852      2
#> 4     1 -13.90  -2.55 -0.04306056 -0.68188404 -13.94306056  -3.2318840      2
#> 5     1 -14.40  -5.80  3.13787860 -0.01945734 -11.26212140  -5.8194573      2
#> 6     1  -3.60  -1.70  0.29463320  1.46263966  -3.30536680  -0.2373603      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -37625   7150 
#> initial  value 998.131940 
#> iter   2 value 828.350273
#> iter   3 value 818.368201
#> iter   4 value 818.098898
#> iter   5 value 778.265521
#> iter   6 value 769.940285
#> iter   7 value 768.529884
#> iter   8 value 768.500721
#> iter   9 value 768.500664
#> iter  10 value 768.500647
#> iter  10 value 768.500637
#> iter  10 value 768.500631
#> final  value 768.500631 
#> converged
#> This is Run number  40 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  5.64420497 -0.3499432   5.094205 -12.9499432      1
#> 2     1  -0.95  -2.35 -0.87913942 -0.1768537  -1.829139  -2.5268537      1
#> 3     1  -6.20  -2.30  0.18467297  1.7994440  -6.015327  -0.5005560      2
#> 4     1 -13.90  -2.55  0.55369332  1.8287463 -13.346307  -0.7212537      2
#> 5     1 -14.40  -5.80  0.40074217  0.1881833 -13.999258  -5.6118167      2
#> 6     1  -3.60  -1.70 -0.05689137 -0.7171636  -3.656891  -2.4171636      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5780 -37300   7100 
#> initial  value 998.131940 
#> iter   2 value 833.572147
#> iter   3 value 821.535543
#> iter   4 value 819.669924
#> iter   5 value 779.354791
#> iter   6 value 771.141273
#> iter   7 value 769.789226
#> iter   8 value 769.763318
#> iter   9 value 769.763279
#> iter   9 value 769.763268
#> iter   9 value 769.763262
#> final  value 769.763262 
#> converged
#> This is Run number  41 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.71344109 -0.61904602   0.1634411 -13.2190460      1
#> 2     1  -0.95  -2.35 -0.77153748  2.68346729  -1.7215375   0.3334673      2
#> 3     1  -6.20  -2.30  0.77589563  1.10408139  -5.4241044  -1.1959186      2
#> 4     1 -13.90  -2.55  2.34094934  1.97225981 -11.5590507  -0.5777402      2
#> 5     1 -14.40  -5.80 -1.14422438  1.35972356 -15.5442244  -4.4402764      2
#> 6     1  -3.60  -1.70  0.06537586  0.04048977  -3.5346241  -1.6595102      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6540 -38450   6950 
#> initial  value 998.131940 
#> iter   2 value 817.889984
#> iter   3 value 806.904123
#> iter   4 value 806.075294
#> iter   5 value 768.711924
#> iter   6 value 760.208173
#> iter   7 value 758.803017
#> iter   8 value 758.772441
#> iter   9 value 758.772384
#> iter  10 value 758.772369
#> iter  10 value 758.772359
#> iter  10 value 758.772359
#> final  value 758.772359 
#> converged
#> This is Run number  42 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.66879038  0.4249742   0.1187904 -12.1750258      1
#> 2     1  -0.95  -2.35  1.27022437 -0.3186559   0.3202244  -2.6686559      1
#> 3     1  -6.20  -2.30  3.49196275  0.4859582  -2.7080373  -1.8140418      2
#> 4     1 -13.90  -2.55  0.06579049  0.8237347 -13.8342095  -1.7262653      2
#> 5     1 -14.40  -5.80 -0.35180520 -0.9315576 -14.7518052  -6.7315576      2
#> 6     1  -3.60  -1.70 -0.10000316  1.5322635  -3.7000032  -0.1677365      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -39650   7725 
#> initial  value 998.131940 
#> iter   2 value 795.642293
#> iter   3 value 779.625121
#> iter   4 value 778.030535
#> iter   5 value 744.673312
#> iter   6 value 736.094145
#> iter   7 value 734.934048
#> iter   8 value 734.913266
#> iter   8 value 734.913257
#> final  value 734.913257 
#> converged
#> This is Run number  43 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.79728459  0.6615376   1.2472846 -11.9384624      1
#> 2     1  -0.95  -2.35  0.69384936  0.7528065  -0.2561506  -1.5971935      1
#> 3     1  -6.20  -2.30  0.09488667 -0.2946189  -6.1051133  -2.5946189      2
#> 4     1 -13.90  -2.55 -0.17879059  0.2140843 -14.0787906  -2.3359157      2
#> 5     1 -14.40  -5.80  0.20991343  2.4000887 -14.1900866  -3.3999113      2
#> 6     1  -3.60  -1.70  0.80539326  0.9928431  -2.7946067  -0.7071569      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6240 -39925   6900 
#> initial  value 998.131940 
#> iter   2 value 796.234974
#> iter   3 value 780.987785
#> iter   4 value 777.914120
#> iter   5 value 745.620412
#> iter   6 value 736.936690
#> iter   7 value 735.696435
#> iter   8 value 735.669800
#> iter   9 value 735.669767
#> iter   9 value 735.669760
#> iter   9 value 735.669756
#> final  value 735.669756 
#> converged
#> This is Run number  44 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.15137793 -0.2996835   1.601378 -12.8996835      1
#> 2     1  -0.95  -2.35  2.20135275  2.6315006   1.251353   0.2815006      1
#> 3     1  -6.20  -2.30 -0.44624093  1.2011576  -6.646241  -1.0988424      2
#> 4     1 -13.90  -2.55 -0.92385415  0.3782121 -14.823854  -2.1717879      2
#> 5     1 -14.40  -5.80  0.75980472 -0.1540351 -13.640195  -5.9540351      2
#> 6     1  -3.60  -1.70 -0.01342134  0.6343489  -3.613421  -1.0656511      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5800 -39325   7200 
#> initial  value 998.131940 
#> iter   2 value 803.937680
#> iter   3 value 786.970750
#> iter   4 value 783.227340
#> iter   5 value 749.361634
#> iter   6 value 740.778429
#> iter   7 value 739.562344
#> iter   8 value 739.538702
#> iter   9 value 739.538679
#> iter   9 value 739.538673
#> iter   9 value 739.538669
#> final  value 739.538669 
#> converged
#> This is Run number  45 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.2268981  0.52156093   1.6768981 -12.078439      1
#> 2     1  -0.95  -2.35  1.1853668  0.57665505   0.2353668  -1.773345      1
#> 3     1  -6.20  -2.30  1.8662031 -1.16877987  -4.3337969  -3.468780      2
#> 4     1 -13.90  -2.55  1.8871877  0.26783324 -12.0128123  -2.282167      2
#> 5     1 -14.40  -5.80  2.1544772 -0.06336121 -12.2455228  -5.863361      2
#> 6     1  -3.60  -1.70 -0.8812035 -0.01736191  -4.4812035  -1.717362      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6740 -38750   6250 
#> initial  value 998.131940 
#> iter   2 value 816.998406
#> iter   3 value 807.551852
#> iter   4 value 806.444364
#> iter   5 value 769.928505
#> iter   6 value 761.376496
#> iter   7 value 759.822928
#> iter   8 value 759.785233
#> iter   9 value 759.785144
#> iter  10 value 759.785131
#> iter  10 value 759.785124
#> iter  10 value 759.785122
#> final  value 759.785122 
#> converged
#> This is Run number  46 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.0752339  3.5760596   1.5252339 -9.0239404      1
#> 2     1  -0.95  -2.35  0.8326241 -0.7056624  -0.1173759 -3.0556624      1
#> 3     1  -6.20  -2.30 -1.2166153  1.7291134  -7.4166153 -0.5708866      2
#> 4     1 -13.90  -2.55  0.6362095  1.3768847 -13.2637905 -1.1731153      2
#> 5     1 -14.40  -5.80 -0.9054315  0.3000937 -15.3054315 -5.4999063      2
#> 6     1  -3.60  -1.70  0.2473169  1.1548039  -3.3526831 -0.5451961      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -38300   7300 
#> initial  value 998.131940 
#> iter   2 value 818.263020
#> iter   3 value 805.890818
#> iter   4 value 804.812583
#> iter   5 value 767.149205
#> iter   6 value 758.688534
#> iter   7 value 757.361049
#> iter   8 value 757.334486
#> iter   9 value 757.334446
#> iter  10 value 757.334433
#> iter  10 value 757.334423
#> iter  10 value 757.334416
#> final  value 757.334416 
#> converged
#> This is Run number  47 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1         e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.002738357 -0.10609074  -0.5527384 -12.70609074      1
#> 2     1  -0.95  -2.35 -1.106705668  2.26787135  -2.0567057  -0.08212865      2
#> 3     1  -6.20  -2.30  0.866482793  0.07076876  -5.3335172  -2.22923124      2
#> 4     1 -13.90  -2.55 -0.515772589  5.44155689 -14.4157726   2.89155689      2
#> 5     1 -14.40  -5.80  2.332070612 -0.22660395 -12.0679294  -6.02660395      2
#> 6     1  -3.60  -1.70 -0.294911813  3.35509553  -3.8949118   1.65509553      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7060 -40100   6825 
#> initial  value 998.131940 
#> iter   2 value 793.158459
#> iter   3 value 781.454262
#> iter   4 value 780.714280
#> iter   5 value 748.201439
#> iter   6 value 739.441585
#> iter   7 value 738.110261
#> iter   8 value 738.078954
#> iter   9 value 738.078898
#> iter  10 value 738.078885
#> iter  10 value 738.078877
#> iter  10 value 738.078870
#> final  value 738.078870 
#> converged
#> This is Run number  48 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.9371712 -0.49542166   2.387171 -13.0954217      1
#> 2     1  -0.95  -2.35 -0.1214152  0.74815949  -1.071415  -1.6018405      1
#> 3     1  -6.20  -2.30 -0.1583219 -0.15883663  -6.358322  -2.4588366      2
#> 4     1 -13.90  -2.55  2.1187215  0.02039968 -11.781279  -2.5296003      2
#> 5     1 -14.40  -5.80 -1.4620323  2.24545905 -15.862032  -3.5545409      2
#> 6     1  -3.60  -1.70  0.5090615  1.32945124  -3.090938  -0.3705488      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5960 -37900   6725 
#> initial  value 998.131940 
#> iter   2 value 827.293699
#> iter   3 value 815.341660
#> iter   4 value 813.156383
#> iter   5 value 774.601331
#> iter   6 value 766.229112
#> iter   7 value 764.822091
#> iter   8 value 764.792688
#> iter   9 value 764.792638
#> iter   9 value 764.792628
#> iter   9 value 764.792622
#> final  value 764.792622 
#> converged
#> This is Run number  49 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8564031  0.7850111   0.3064031 -11.814989      1
#> 2     1  -0.95  -2.35  0.6465253 -0.2390917  -0.3034747  -2.589092      1
#> 3     1  -6.20  -2.30  0.0358460  3.6958055  -6.1641540   1.395806      2
#> 4     1 -13.90  -2.55 -0.8363841  1.3921845 -14.7363841  -1.157815      2
#> 5     1 -14.40  -5.80  1.3140880  0.0114584 -13.0859120  -5.788542      2
#> 6     1  -3.60  -1.70  0.8793345 -0.8890097  -2.7206655  -2.589010      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5920 -38175   7275 
#> initial  value 998.131940 
#> iter   2 value 820.374861
#> iter   3 value 806.770309
#> iter   4 value 804.742841
#> iter   5 value 766.995619
#> iter   6 value 758.579463
#> iter   7 value 757.271294
#> iter   8 value 757.245909
#> iter   9 value 757.245876
#> iter   9 value 757.245865
#> iter   9 value 757.245859
#> final  value 757.245859 
#> converged
#> This is Run number  50 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0705900  5.1100053  -1.620590 -7.4899947      1
#> 2     1  -0.95  -2.35 -1.1243438  2.1529982  -2.074344 -0.1970018      2
#> 3     1  -6.20  -2.30 -0.4195396  0.3477998  -6.619540 -1.9522002      2
#> 4     1 -13.90  -2.55  0.3434726  1.9679806 -13.556527 -0.5820194      2
#> 5     1 -14.40  -5.80 -0.1494952 -0.4306518 -14.549495 -6.2306518      2
#> 6     1  -3.60  -1.70  0.6583265  1.2582679  -2.941673 -0.4417321      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6420 -38975   6775 
#> initial  value 998.131940 
#> iter   2 value 811.262900
#> iter   3 value 799.195027
#> iter   4 value 797.529397
#> iter   5 value 761.935076
#> iter   6 value 753.338990
#> iter   7 value 751.954330
#> iter   8 value 751.923408
#> iter   9 value 751.923355
#> iter  10 value 751.923343
#> iter  10 value 751.923335
#> iter  10 value 751.923335
#> final  value 751.923335 
#> converged
#> This is Run number  51 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1734721  4.0768734  -0.7234721 -8.523127      1
#> 2     1  -0.95  -2.35 -0.5763385  1.2462055  -1.5263385 -1.103794      2
#> 3     1  -6.20  -2.30  0.2401681 -0.1925522  -5.9598319 -2.492552      2
#> 4     1 -13.90  -2.55 -1.0784556 -0.4946384 -14.9784556 -3.044638      2
#> 5     1 -14.40  -5.80  0.9013395  0.6825405 -13.4986605 -5.117459      2
#> 6     1  -3.60  -1.70  2.3287621 -0.6088609  -1.2712379 -2.308861      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5940 -38350   6625 
#> initial  value 998.131940 
#> iter   2 value 821.439197
#> iter   3 value 808.514081
#> iter   4 value 805.738817
#> iter   5 value 768.627081
#> iter   6 value 760.142531
#> iter   7 value 758.744908
#> iter   8 value 758.714885
#> iter   9 value 758.714834
#> iter   9 value 758.714825
#> iter   9 value 758.714820
#> final  value 758.714820 
#> converged
#> This is Run number  52 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.21332141  0.6115616  -0.7633214 -11.988438      1
#> 2     1  -0.95  -2.35 -0.06550073 -0.2540718  -1.0155007  -2.604072      1
#> 3     1  -6.20  -2.30 -0.47778568  0.6458479  -6.6777857  -1.654152      2
#> 4     1 -13.90  -2.55  0.26206233 -0.5363866 -13.6379377  -3.086387      2
#> 5     1 -14.40  -5.80 -1.28305421 -0.9505438 -15.6830542  -6.750544      2
#> 6     1  -3.60  -1.70 -0.03367503  3.4157704  -3.6336750   1.715770      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5600 -37700   6850 
#> initial  value 998.131940 
#> iter   2 value 829.488034
#> iter   3 value 815.880643
#> iter   4 value 812.851747
#> iter   5 value 773.954597
#> iter   6 value 765.620054
#> iter   7 value 764.262927
#> iter   8 value 764.236153
#> iter   9 value 764.236115
#> iter   9 value 764.236106
#> iter   9 value 764.236102
#> final  value 764.236102 
#> converged
#> This is Run number  53 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1         e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 1.5840847 -0.53130286   1.03408467 -13.1313029      1
#> 2     1  -0.95  -2.35 0.9671002  0.57240380   0.01710017  -1.7775962      1
#> 3     1  -6.20  -2.30 1.1787649 -0.04038893  -5.02123513  -2.3403889      2
#> 4     1 -13.90  -2.55 0.5168136  0.74795404 -13.38318641  -1.8020460      2
#> 5     1 -14.40  -5.80 0.0269467  2.70764331 -14.37305330  -3.0923567      2
#> 6     1  -3.60  -1.70 2.1059306  0.91435411  -1.49406938  -0.7856459      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5860 -38500   7325 
#> initial  value 998.131940 
#> iter   2 value 815.434675
#> iter   3 value 800.680455
#> iter   4 value 798.200804
#> iter   5 value 761.549803
#> iter   6 value 753.081569
#> iter   7 value 751.804646
#> iter   8 value 751.780141
#> iter   9 value 751.780113
#> iter   9 value 751.780103
#> iter   9 value 751.780098
#> final  value 751.780098 
#> converged
#> This is Run number  54 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.1226000  0.48452969  -1.6726000 -12.115470      1
#> 2     1  -0.95  -2.35  0.5041335 -0.51810840  -0.4458665  -2.868108      1
#> 3     1  -6.20  -2.30  0.2347791  1.99681704  -5.9652209  -0.303183      2
#> 4     1 -13.90  -2.55  0.4909746 -0.08782500 -13.4090254  -2.637825      2
#> 5     1 -14.40  -5.80 -1.0817428  0.09356892 -15.4817428  -5.706431      2
#> 6     1  -3.60  -1.70 -0.1716076  0.47813314  -3.7716076  -1.221867      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6640 -38100   7375 
#> initial  value 998.131940 
#> iter   2 value 820.359070
#> iter   3 value 809.234542
#> iter   4 value 808.981016
#> iter   5 value 770.540398
#> iter   6 value 762.092484
#> iter   7 value 760.737481
#> iter   8 value 760.710046
#> iter   9 value 760.709998
#> iter  10 value 760.709983
#> iter  10 value 760.709974
#> iter  10 value 760.709966
#> final  value 760.709966 
#> converged
#> This is Run number  55 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.9081562  2.42970564   2.3581562 -10.170294      1
#> 2     1  -0.95  -2.35  0.3418053 -0.02434984  -0.6081947  -2.374350      1
#> 3     1  -6.20  -2.30 -0.5075199 -0.67135129  -6.7075199  -2.971351      2
#> 4     1 -13.90  -2.55  0.3120520 -0.21792546 -13.5879480  -2.767925      2
#> 5     1 -14.40  -5.80  0.2889016  0.88446951 -14.1110984  -4.915530      2
#> 6     1  -3.60  -1.70  0.3922307  0.33060741  -3.2077693  -1.369393      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5660 -36700   7575 
#> initial  value 998.131940 
#> iter   2 value 838.829533
#> iter   3 value 826.877525
#> iter   4 value 825.526432
#> iter   5 value 783.392655
#> iter   6 value 775.339955
#> iter   7 value 774.050023
#> iter   8 value 774.027792
#> iter   9 value 774.027762
#> iter   9 value 774.027751
#> iter   9 value 774.027745
#> final  value 774.027745 
#> converged
#> This is Run number  56 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.002726308 -0.4310971  -0.5472737 -13.03109715      1
#> 2     1  -0.95  -2.35  0.029817228  0.1321433  -0.9201828  -2.21785665      1
#> 3     1  -6.20  -2.30  0.852524470  2.2600634  -5.3474755  -0.03993665      2
#> 4     1 -13.90  -2.55 -0.387014032  0.1709590 -14.2870140  -2.37904103      2
#> 5     1 -14.40  -5.80 -1.619565647  1.4339483 -16.0195656  -4.36605167      2
#> 6     1  -3.60  -1.70 -0.864710967  3.0335322  -4.4647110   1.33353222      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7200 -40600   6275 
#> initial  value 998.131940 
#> iter   2 value 787.877907
#> iter   3 value 777.147900
#> iter   4 value 775.935444
#> iter   5 value 744.967575
#> iter   6 value 736.153199
#> iter   7 value 734.751407
#> iter   8 value 734.714794
#> iter   9 value 734.714716
#> iter   9 value 734.714705
#> iter   9 value 734.714697
#> final  value 734.714697 
#> converged
#> This is Run number  57 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1          e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.9945020  0.520600487   0.444502 -12.079400      1
#> 2     1  -0.95  -2.35 -0.1858918  0.007004588  -1.135892  -2.342995      1
#> 3     1  -6.20  -2.30 -0.2102867 -0.641286324  -6.410287  -2.941286      2
#> 4     1 -13.90  -2.55  3.7337388 -0.089307883 -10.166261  -2.639308      2
#> 5     1 -14.40  -5.80  0.2335292 -0.627732068 -14.166471  -6.427732      2
#> 6     1  -3.60  -1.70 -0.3792656  1.148182025  -3.979266  -0.551818      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6760 -40025   7000 
#> initial  value 998.131940 
#> iter   2 value 793.717902
#> iter   3 value 780.617740
#> iter   4 value 779.324508
#> iter   5 value 746.808653
#> iter   6 value 738.088269
#> iter   7 value 736.817074
#> iter   8 value 736.788971
#> iter   9 value 736.788931
#> iter   9 value 736.788920
#> iter   9 value 736.788913
#> final  value 736.788913 
#> converged
#> This is Run number  58 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1           e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.4571985  1.3058410927  -0.09280151 -11.294159      1
#> 2     1  -0.95  -2.35 -0.1937811 -1.0521658995  -1.14378108  -3.402166      1
#> 3     1  -6.20  -2.30 -0.9002293 -0.3171285445  -7.10022930  -2.617129      2
#> 4     1 -13.90  -2.55  2.0540424 -0.0008984213 -11.84595755  -2.550898      2
#> 5     1 -14.40  -5.80  1.2539520  0.2071496298 -13.14604797  -5.592850      2
#> 6     1  -3.60  -1.70  0.1663033 -0.2220928603  -3.43369670  -1.922093      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6520 -38425   6300 
#> initial  value 998.131940 
#> iter   2 value 821.677556
#> iter   3 value 811.847539
#> iter   4 value 810.449793
#> iter   5 value 773.105717
#> iter   6 value 764.621464
#> iter   7 value 763.090220
#> iter   8 value 763.054354
#> iter   9 value 763.054274
#> iter  10 value 763.054262
#> iter  10 value 763.054255
#> iter  10 value 763.054252
#> final  value 763.054252 
#> converged
#> This is Run number  59 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.43597779  1.56527902  -0.9859778 -11.034721      1
#> 2     1  -0.95  -2.35  3.85699231  0.06030084   2.9069923  -2.289699      1
#> 3     1  -6.20  -2.30  0.28358072  0.33147899  -5.9164193  -1.968521      2
#> 4     1 -13.90  -2.55 -0.23075292  0.17126672 -14.1307529  -2.378733      2
#> 5     1 -14.40  -5.80  0.09154495  1.70106369 -14.3084551  -4.098936      2
#> 6     1  -3.60  -1.70  1.08872305 -0.50416569  -2.5112770  -2.204166      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38125   6675 
#> initial  value 998.131940 
#> iter   2 value 824.153085
#> iter   3 value 813.691828
#> iter   4 value 812.473636
#> iter   5 value 774.255517
#> iter   6 value 765.832548
#> iter   7 value 764.377969
#> iter   8 value 764.345990
#> iter   9 value 764.345928
#> iter   9 value 764.345928
#> iter   9 value 764.345928
#> final  value 764.345928 
#> converged
#> This is Run number  60 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.2508201 -0.3734890  -0.2991799 -12.973489      1
#> 2     1  -0.95  -2.35 -1.3414033 -0.5180348  -2.2914033  -2.868035      1
#> 3     1  -6.20  -2.30  4.8701170  0.1663493  -1.3298830  -2.133651      1
#> 4     1 -13.90  -2.55  2.8363642  2.9052270 -11.0636358   0.355227      2
#> 5     1 -14.40  -5.80 -0.1019067  1.4269929 -14.5019067  -4.373007      2
#> 6     1  -3.60  -1.70 -0.2679252  0.5507058  -3.8679252  -1.149294      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5680 -38625   6500 
#> initial  value 998.131940 
#> iter   2 value 818.145445
#> iter   3 value 803.059787
#> iter   4 value 798.995026
#> iter   5 value 762.916691
#> iter   6 value 754.331446
#> iter   7 value 752.976540
#> iter   8 value 752.947464
#> iter   9 value 752.947416
#> iter   9 value 752.947407
#> iter   9 value 752.947403
#> final  value 752.947403 
#> converged
#> This is Run number  61 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.14092514  1.0831714  -0.6909251 -11.516829      1
#> 2     1  -0.95  -2.35 -0.08381742 -1.7439245  -1.0338174  -4.093924      1
#> 3     1  -6.20  -2.30 -0.42034058  0.8241373  -6.6203406  -1.475863      2
#> 4     1 -13.90  -2.55  3.81712748 -0.3536398 -10.0828725  -2.903640      2
#> 5     1 -14.40  -5.80  0.08110513  1.2564924 -14.3188949  -4.543508      2
#> 6     1  -3.60  -1.70  2.12373749 -0.3276367  -1.4762625  -2.027637      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -38550   7450 
#> initial  value 998.131940 
#> iter   2 value 813.862286
#> iter   3 value 800.098676
#> iter   4 value 798.591095
#> iter   5 value 761.819604
#> iter   6 value 753.332299
#> iter   7 value 752.054468
#> iter   8 value 752.029896
#> iter   9 value 752.029865
#> iter   9 value 752.029854
#> iter   9 value 752.029847
#> final  value 752.029847 
#> converged
#> This is Run number  62 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.3758963 -0.43300879  -0.1741037 -13.0330088      1
#> 2     1  -0.95  -2.35  0.6072881 -0.06120956  -0.3427119  -2.4112096      1
#> 3     1  -6.20  -2.30  1.9644980  0.88644384  -4.2355020  -1.4135562      2
#> 4     1 -13.90  -2.55 -0.8964901  1.33120664 -14.7964901  -1.2187934      2
#> 5     1 -14.40  -5.80 -0.9474455  1.23384735 -15.3474455  -4.5661526      2
#> 6     1  -3.60  -1.70 -0.3889098  2.14841735  -3.9889098   0.4484173      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7160 -40725   6900 
#> initial  value 998.131940 
#> iter   2 value 782.639395
#> iter   3 value 770.073151
#> iter   4 value 769.243252
#> iter   5 value 738.689303
#> iter   6 value 729.908723
#> iter   7 value 728.669815
#> iter   8 value 728.641377
#> iter   9 value 728.641335
#> iter   9 value 728.641324
#> iter   9 value 728.641316
#> final  value 728.641316 
#> converged
#> This is Run number  63 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.09708567  0.22972358  -0.4529143 -12.3702764      1
#> 2     1  -0.95  -2.35 -0.28340339  0.90102124  -1.2334034  -1.4489788      1
#> 3     1  -6.20  -2.30 -0.72245935  1.42273912  -6.9224594  -0.8772609      2
#> 4     1 -13.90  -2.55 -0.26040919 -0.55923959 -14.1604092  -3.1092396      2
#> 5     1 -14.40  -5.80  5.96485406 -0.04564194  -8.4351459  -5.8456419      2
#> 6     1  -3.60  -1.70  0.77720827  1.06356686  -2.8227917  -0.6364331      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5540 -37050   6825 
#> initial  value 998.131940 
#> iter   2 value 838.484488
#> iter   3 value 826.128444
#> iter   4 value 823.520020
#> iter   5 value 782.698589
#> iter   6 value 774.543489
#> iter   7 value 773.173324
#> iter   8 value 773.147130
#> iter   9 value 773.147091
#> iter   9 value 773.147082
#> iter   9 value 773.147078
#> final  value 773.147078 
#> converged
#> This is Run number  64 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.9645116  0.66883180  -1.5145116 -11.9311682      1
#> 2     1  -0.95  -2.35  1.3703464  0.50142487   0.4203464  -1.8485751      1
#> 3     1  -6.20  -2.30  2.4423214 -0.55877465  -3.7576786  -2.8587746      2
#> 4     1 -13.90  -2.55  0.9106932 -0.06069489 -12.9893068  -2.6106949      2
#> 5     1 -14.40  -5.80  0.7759955  5.06427833 -13.6240045  -0.7357217      2
#> 6     1  -3.60  -1.70  1.5890401  1.53529954  -2.0109599  -0.1647005      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6400 -38375   6575 
#> initial  value 998.131940 
#> iter   2 value 821.095508
#> iter   3 value 810.427510
#> iter   4 value 808.992492
#> iter   5 value 771.547059
#> iter   6 value 763.067506
#> iter   7 value 761.604698
#> iter   8 value 761.571795
#> iter   9 value 761.571730
#> iter   9 value 761.571729
#> iter   9 value 761.571729
#> final  value 761.571729 
#> converged
#> This is Run number  65 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60  1.2704263 3.37310339   0.7204263 -9.226897      1
#> 2     1  -0.95  -2.35 -0.3886616 0.08641257  -1.3386616 -2.263587      1
#> 3     1  -6.20  -2.30  0.9599140 0.79382039  -5.2400860 -1.506180      2
#> 4     1 -13.90  -2.55  0.1436504 1.29666697 -13.7563496 -1.253333      2
#> 5     1 -14.40  -5.80  1.0584448 0.70018071 -13.3415552 -5.099819      2
#> 6     1  -3.60  -1.70 -0.9948526 3.43193013  -4.5948526  1.731930      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7500 -39325   5525 
#> initial  value 998.131940 
#> iter   2 value 810.778554
#> iter   3 value 804.127351
#> iter   4 value 803.725034
#> iter   5 value 768.530008
#> iter   6 value 759.937831
#> iter   7 value 758.112106
#> iter   8 value 758.061529
#> iter   9 value 758.061358
#> iter  10 value 758.061342
#> iter  10 value 758.061342
#> iter  10 value 758.061336
#> final  value 758.061336 
#> converged
#> This is Run number  66 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1       e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.94274035 1.0587750  -1.492740 -11.5412250      1
#> 2     1  -0.95  -2.35 -0.50325596 0.5223148  -1.453256  -1.8276852      1
#> 3     1  -6.20  -2.30  0.85593397 1.1380797  -5.344066  -1.1619203      2
#> 4     1 -13.90  -2.55  0.90895125 0.5227077 -12.991049  -2.0272923      2
#> 5     1 -14.40  -5.80  0.05103792 1.1640035 -14.348962  -4.6359965      2
#> 6     1  -3.60  -1.70 -0.97035454 1.5549439  -4.570355  -0.1450561      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6340 -40375   7175 
#> initial  value 998.131940 
#> iter   2 value 787.535400
#> iter   3 value 771.277229
#> iter   4 value 768.428218
#> iter   5 value 737.516024
#> iter   6 value 728.858032
#> iter   7 value 727.703811
#> iter   8 value 727.680519
#> iter   9 value 727.680498
#> iter   9 value 727.680492
#> iter   9 value 727.680488
#> final  value 727.680488 
#> converged
#> This is Run number  67 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.2173684 -0.3451926   1.667368 -12.945193      1
#> 2     1  -0.95  -2.35 -0.4137732 -0.3473576  -1.363773  -2.697358      1
#> 3     1  -6.20  -2.30 -1.0058077  0.3302565  -7.205808  -1.969743      2
#> 4     1 -13.90  -2.55 -0.2291413 -0.4238604 -14.129141  -2.973860      2
#> 5     1 -14.40  -5.80 -0.1175618  1.4433230 -14.517562  -4.356677      2
#> 6     1  -3.60  -1.70  2.3114642  0.6781493  -1.288536  -1.021851      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6300 -40450   6625 
#> initial  value 998.131940 
#> iter   2 value 789.365128
#> iter   3 value 773.698035
#> iter   4 value 769.900117
#> iter   5 value 739.331998
#> iter   6 value 730.592069
#> iter   7 value 729.375716
#> iter   8 value 729.348246
#> iter   9 value 729.348207
#> iter   9 value 729.348202
#> iter   9 value 729.348197
#> final  value 729.348197 
#> converged
#> This is Run number  68 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.9237850  0.3464801   1.373785 -12.253520      1
#> 2     1  -0.95  -2.35  2.1097690  0.8237414   1.159769  -1.526259      1
#> 3     1  -6.20  -2.30  0.6987535  0.4687134  -5.501246  -1.831287      2
#> 4     1 -13.90  -2.55  2.0057769  0.9240380 -11.894223  -1.625962      2
#> 5     1 -14.40  -5.80 -0.9823895 -0.8427107 -15.382389  -6.642711      2
#> 6     1  -3.60  -1.70  1.4806043 -0.5814357  -2.119396  -2.281436      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5980 -37975   7475 
#> initial  value 998.131940 
#> iter   2 value 822.009027
#> iter   3 value 808.751339
#> iter   4 value 807.252887
#> iter   5 value 768.791592
#> iter   6 value 760.417338
#> iter   7 value 759.122939
#> iter   8 value 759.098674
#> iter   9 value 759.098642
#> iter  10 value 759.098630
#> iter  10 value 759.098621
#> iter  10 value 759.098615
#> final  value 759.098615 
#> converged
#> This is Run number  69 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 0.2831594 -0.1999130  -0.2668406 -12.7999130      1
#> 2     1  -0.95  -2.35 0.4834013 -0.2763667  -0.4665987  -2.6263667      1
#> 3     1  -6.20  -2.30 1.1292655  1.5569049  -5.0707345  -0.7430951      2
#> 4     1 -13.90  -2.55 1.0461758  0.6917944 -12.8538242  -1.8582056      2
#> 5     1 -14.40  -5.80 1.4374732 -1.6730457 -12.9625268  -7.4730457      2
#> 6     1  -3.60  -1.70 1.0482825  4.2943994  -2.5517175   2.5943994      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7280 -40550   6250 
#> initial  value 998.131940 
#> iter   2 value 788.693308
#> iter   3 value 778.388955
#> iter   4 value 777.399561
#> iter   5 value 746.195610
#> iter   6 value 737.380478
#> iter   7 value 735.951866
#> iter   8 value 735.914177
#> iter   9 value 735.914093
#> iter  10 value 735.914081
#> iter  10 value 735.914076
#> iter  10 value 735.914069
#> final  value 735.914069 
#> converged
#> This is Run number  70 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.98806493 1.14983111   2.4380649 -11.4501689      1
#> 2     1  -0.95  -2.35  1.31764356 0.70060328   0.3676436  -1.6493967      1
#> 3     1  -6.20  -2.30  0.27133930 2.84941387  -5.9286607   0.5494139      2
#> 4     1 -13.90  -2.55 -0.38386691 0.09670359 -14.2838669  -2.4532964      2
#> 5     1 -14.40  -5.80 -0.19966443 0.67225741 -14.5996644  -5.1277426      2
#> 6     1  -3.60  -1.70  0.05103394 0.68438236  -3.5489661  -1.0156176      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7360 -40125   5975 
#> initial  value 998.131940 
#> iter   2 value 796.656315
#> iter   3 value 787.797068
#> iter   4 value 787.032502
#> iter   5 value 754.410469
#> iter   6 value 745.639165
#> iter   7 value 744.060553
#> iter   8 value 744.017332
#> iter   9 value 744.017216
#> iter  10 value 744.017202
#> iter  10 value 744.017197
#> iter  10 value 744.017190
#> final  value 744.017190 
#> converged
#> This is Run number  71 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.9558678 -0.28590425   1.40586777 -12.8859043      1
#> 2     1  -0.95  -2.35  0.9939595 -0.47121844   0.04395947  -2.8212184      1
#> 3     1  -6.20  -2.30  1.3622489  2.04312783  -4.83775108  -0.2568722      2
#> 4     1 -13.90  -2.55  0.8113508  6.91967651 -13.08864923   4.3696765      2
#> 5     1 -14.40  -5.80  1.3510047  0.06870411 -13.04899526  -5.7312959      2
#> 6     1  -3.60  -1.70 -2.0749149 -0.35809217  -5.67491489  -2.0580922      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5840 -38800   7350 
#> initial  value 998.131940 
#> iter   2 value 810.909720
#> iter   3 value 795.271293
#> iter   4 value 792.441926
#> iter   5 value 756.788568
#> iter   6 value 748.279850
#> iter   7 value 747.029721
#> iter   8 value 747.005883
#> iter   9 value 747.005858
#> iter   9 value 747.005849
#> iter   9 value 747.005844
#> final  value 747.005844 
#> converged
#> This is Run number  72 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.68005206  0.51367898  -1.230052 -12.086321      1
#> 2     1  -0.95  -2.35  3.89628108 -0.02885329   2.946281  -2.378853      1
#> 3     1  -6.20  -2.30  0.62907324 -1.11398545  -5.570927  -3.413985      2
#> 4     1 -13.90  -2.55 -1.17330829 -0.17502990 -15.073308  -2.725030      2
#> 5     1 -14.40  -5.80  1.83859271 -0.29812469 -12.561407  -6.098125      2
#> 6     1  -3.60  -1.70 -0.08773535 -0.55055796  -3.687735  -2.250558      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5640 -38375   7200 
#> initial  value 998.131940 
#> iter   2 value 817.996336
#> iter   3 value 802.495944
#> iter   4 value 799.232143
#> iter   5 value 762.401709
#> iter   6 value 753.947707
#> iter   7 value 752.666703
#> iter   8 value 752.642195
#> iter   9 value 752.642168
#> iter   9 value 752.642159
#> iter   9 value 752.642155
#> final  value 752.642155 
#> converged
#> This is Run number  73 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.0637934  0.8624431   0.5137934 -11.7375569      1
#> 2     1  -0.95  -2.35  0.6601374 -0.7218626  -0.2898626  -3.0718626      1
#> 3     1  -6.20  -2.30 -0.8427415  0.5771343  -7.0427415  -1.7228657      2
#> 4     1 -13.90  -2.55  1.6078021  0.4439846 -12.2921979  -2.1060154      2
#> 5     1 -14.40  -5.80  0.1739378 -0.2364939 -14.2260622  -6.0364939      2
#> 6     1  -3.60  -1.70  1.1675201  1.0402617  -2.4324799  -0.6597383      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6780 -38900   6825 
#> initial  value 998.131940 
#> iter   2 value 811.772035
#> iter   3 value 801.083775
#> iter   4 value 800.422025
#> iter   5 value 764.297307
#> iter   6 value 755.700620
#> iter   7 value 754.275055
#> iter   8 value 754.242478
#> iter   9 value 754.242413
#> iter  10 value 754.242398
#> iter  10 value 754.242388
#> iter  10 value 754.242381
#> final  value 754.242381 
#> converged
#> This is Run number  74 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.2924840  0.8739020   1.7424840 -11.726098      1
#> 2     1  -0.95  -2.35  0.1284661 -0.1764717  -0.8215339  -2.526472      1
#> 3     1  -6.20  -2.30  1.0086759  0.4222885  -5.1913241  -1.877712      2
#> 4     1 -13.90  -2.55  2.2127638  0.3745331 -11.6872362  -2.175467      2
#> 5     1 -14.40  -5.80 -0.2433684  4.5157374 -14.6433684  -1.284263      2
#> 6     1  -3.60  -1.70  1.1963571 -0.6265572  -2.4036429  -2.326557      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6820 -40325   5425 
#> initial  value 998.131940 
#> iter   2 value 796.625937
#> iter   3 value 785.810638
#> iter   4 value 782.689526
#> iter   5 value 751.417583
#> iter   6 value 742.606890
#> iter   7 value 741.008584
#> iter   8 value 740.961345
#> iter   9 value 740.961168
#> iter  10 value 740.961150
#> iter  10 value 740.961150
#> iter  11 value 740.961138
#> iter  11 value 740.961135
#> iter  11 value 740.961133
#> final  value 740.961133 
#> converged
#> This is Run number  75 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.7526788  0.7104879  -1.3026788 -11.889512      1
#> 2     1  -0.95  -2.35  1.0967658  1.1902048   0.1467658  -1.159795      1
#> 3     1  -6.20  -2.30  1.2696449 -0.8296046  -4.9303551  -3.129605      2
#> 4     1 -13.90  -2.55  0.4102497  2.8696700 -13.4897503   0.319670      2
#> 5     1 -14.40  -5.80  0.9725670  0.9143179 -13.4274330  -4.885682      2
#> 6     1  -3.60  -1.70  1.5803217 -0.8893010  -2.0196783  -2.589301      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6600 -39500   7300 
#> initial  value 998.131940 
#> iter   2 value 800.275257
#> iter   3 value 786.800005
#> iter   4 value 785.724964
#> iter   5 value 751.632452
#> iter   6 value 742.982749
#> iter   7 value 741.721943
#> iter   8 value 741.695990
#> iter   9 value 741.695955
#> iter  10 value 741.695944
#> iter  10 value 741.695935
#> iter  10 value 741.695928
#> final  value 741.695928 
#> converged
#> This is Run number  76 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.002203018  1.84932479  -0.5522030 -10.750675      1
#> 2     1  -0.95  -2.35  0.055219473  0.35429777  -0.8947805  -1.995702      1
#> 3     1  -6.20  -2.30 -0.688342460 -0.02749961  -6.8883425  -2.327500      2
#> 4     1 -13.90  -2.55  1.096123941  0.52721483 -12.8038761  -2.022785      2
#> 5     1 -14.40  -5.80  0.887343077  1.54773004 -13.5126569  -4.252270      2
#> 6     1  -3.60  -1.70  0.093306994  0.19990133  -3.5066930  -1.500099      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7380 -39075   6425 
#> initial  value 998.131940 
#> iter   2 value 810.468861
#> iter   3 value 801.910484
#> iter   4 value 801.830183
#> iter   5 value 765.949678
#> iter   6 value 757.354382
#> iter   7 value 755.771362
#> iter   8 value 755.731368
#> iter   9 value 755.731260
#> iter  10 value 755.731242
#> iter  10 value 755.731234
#> iter  10 value 755.731226
#> final  value 755.731226 
#> converged
#> This is Run number  77 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1461190 -0.1267509  -0.696119 -12.7267509      1
#> 2     1  -0.95  -2.35 -0.1065639  1.4266081  -1.056564  -0.9233919      2
#> 3     1  -6.20  -2.30  0.8214025 -0.2072795  -5.378598  -2.5072795      2
#> 4     1 -13.90  -2.55 -1.3949348 -1.2271316 -15.294935  -3.7771316      2
#> 5     1 -14.40  -5.80  1.0483308  0.9607808 -13.351669  -4.8392192      2
#> 6     1  -3.60  -1.70  1.4301829  0.2960541  -2.169817  -1.4039459      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6020 -38075   7150 
#> initial  value 998.131940 
#> iter   2 value 822.471399
#> iter   3 value 809.775560
#> iter   4 value 808.022519
#> iter   5 value 769.885747
#> iter   6 value 761.481827
#> iter   7 value 760.141959
#> iter   8 value 760.115221
#> iter   9 value 760.115181
#> iter  10 value 760.115169
#> iter  10 value 760.115160
#> iter  10 value 760.115160
#> final  value 760.115160 
#> converged
#> This is Run number  78 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.8893032  1.9656623  -1.43930316 -10.634338      1
#> 2     1  -0.95  -2.35  3.3472836  0.4352147   2.39728364  -1.914785      1
#> 3     1  -6.20  -2.30 -0.4710426 -0.6388205  -6.67104263  -2.938821      2
#> 4     1 -13.90  -2.55  0.6830566 -0.3580751 -13.21694344  -2.908075      2
#> 5     1 -14.40  -5.80 -0.1114782  1.2884228 -14.51147819  -4.511577      2
#> 6     1  -3.60  -1.70  3.5861732  0.1459608  -0.01382677  -1.554039      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6520 -40625   6975 
#> initial  value 998.131940 
#> iter   2 value 784.520677
#> iter   3 value 769.116361
#> iter   4 value 766.435370
#> iter   5 value 736.184360
#> iter   6 value 727.483128
#> iter   7 value 726.315096
#> iter   8 value 726.290190
#> iter   9 value 726.290163
#> iter   9 value 726.290163
#> iter   9 value 726.290163
#> final  value 726.290163 
#> converged
#> This is Run number  79 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1567705 -0.1169315  -0.7067705 -12.7169315      1
#> 2     1  -0.95  -2.35  1.3874137  0.1202300   0.4374137  -2.2297700      1
#> 3     1  -6.20  -2.30  1.0389011  4.0860144  -5.1610989   1.7860144      2
#> 4     1 -13.90  -2.55  0.9800581 -1.1122798 -12.9199419  -3.6622798      2
#> 5     1 -14.40  -5.80  2.8822508  1.6856565 -11.5177492  -4.1143435      2
#> 6     1  -3.60  -1.70 -0.4873458  2.0758497  -4.0873458   0.3758497      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -39675   6425 
#> initial  value 998.131940 
#> iter   2 value 802.589947
#> iter   3 value 788.890342
#> iter   4 value 785.685694
#> iter   5 value 752.574239
#> iter   6 value 743.859365
#> iter   7 value 742.502476
#> iter   8 value 742.470541
#> iter   9 value 742.470483
#> iter   9 value 742.470475
#> iter   9 value 742.470469
#> final  value 742.470469 
#> converged
#> This is Run number  80 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.6986578  0.84202093   1.148658 -11.757979      1
#> 2     1  -0.95  -2.35  0.6242290 -0.78962108  -0.325771  -3.139621      1
#> 3     1  -6.20  -2.30  0.4635686  1.13209145  -5.736431  -1.167909      2
#> 4     1 -13.90  -2.55 -0.5302197  0.16731670 -14.430220  -2.382683      2
#> 5     1 -14.40  -5.80  1.3253005  1.37522472 -13.074700  -4.424775      2
#> 6     1  -3.60  -1.70  0.4165892  0.03988974  -3.183411  -1.660110      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -41325   6975 
#> initial  value 998.131940 
#> iter   2 value 773.106087
#> iter   3 value 755.069418
#> iter   4 value 750.865562
#> iter   5 value 723.186784
#> iter   6 value 714.574958
#> iter   7 value 713.534303
#> iter   8 value 713.513225
#> iter   9 value 713.513212
#> iter   9 value 713.513209
#> iter   9 value 713.513206
#> final  value 713.513206 
#> converged
#> This is Run number  81 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.8857455  0.69194360   2.335746 -11.908056      1
#> 2     1  -0.95  -2.35 -0.4785646  0.15365553  -1.428565  -2.196344      1
#> 3     1  -6.20  -2.30  0.6992334  0.85319884  -5.500767  -1.446801      2
#> 4     1 -13.90  -2.55  0.5870290  0.08244343 -13.312971  -2.467557      2
#> 5     1 -14.40  -5.80 -1.5699970  1.28708053 -15.969997  -4.512919      2
#> 6     1  -3.60  -1.70 -0.4917272 -0.33048189  -4.091727  -2.030482      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6000 -39275   7600 
#> initial  value 998.131940 
#> iter   2 value 802.288107
#> iter   3 value 785.872757
#> iter   4 value 783.411391
#> iter   5 value 749.140416
#> iter   6 value 740.601795
#> iter   7 value 739.410538
#> iter   8 value 739.388807
#> iter   9 value 739.388788
#> iter   9 value 739.388781
#> iter   9 value 739.388780
#> final  value 739.388780 
#> converged
#> This is Run number  82 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.6815306 -0.4990454   0.1315306 -13.09904539      1
#> 2     1  -0.95  -2.35 -0.2967441  2.4164207  -1.2467441   0.06642072      2
#> 3     1  -6.20  -2.30  0.1689444  0.7661130  -6.0310556  -1.53388699      2
#> 4     1 -13.90  -2.55  0.4964737  1.8496352 -13.4035263  -0.70036480      2
#> 5     1 -14.40  -5.80  0.8407347  1.0421646 -13.5592653  -4.75783541      2
#> 6     1  -3.60  -1.70 -1.2571612  1.8605432  -4.8571612   0.16054320      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6900 -39150   6800 
#> initial  value 998.131940 
#> iter   2 value 808.056514
#> iter   3 value 797.396430
#> iter   4 value 796.824326
#> iter   5 value 761.404299
#> iter   6 value 752.761342
#> iter   7 value 751.337283
#> iter   8 value 751.304138
#> iter   9 value 751.304071
#> iter  10 value 751.304056
#> iter  10 value 751.304046
#> iter  10 value 751.304039
#> final  value 751.304039 
#> converged
#> This is Run number  83 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5597245 -1.0562157  -1.109724 -13.6562157      1
#> 2     1  -0.95  -2.35  2.2426874  1.4630482   1.292687  -0.8869518      1
#> 3     1  -6.20  -2.30 -0.1302133  1.6207747  -6.330213  -0.6792253      2
#> 4     1 -13.90  -2.55  2.7377421  0.7494584 -11.162258  -1.8005416      2
#> 5     1 -14.40  -5.80 -0.6496455 -0.6952994 -15.049646  -6.4952994      2
#> 6     1  -3.60  -1.70 -0.4470218  0.6057720  -4.047022  -1.0942280      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -38400   7275 
#> initial  value 998.131940 
#> iter   2 value 816.973242
#> iter   3 value 804.458518
#> iter   4 value 803.292750
#> iter   5 value 765.943703
#> iter   6 value 757.464569
#> iter   7 value 756.138870
#> iter   8 value 756.112181
#> iter   9 value 756.112140
#> iter  10 value 756.112128
#> iter  10 value 756.112118
#> iter  10 value 756.112112
#> final  value 756.112112 
#> converged
#> This is Run number  84 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.00565409  1.4715000  -0.5556541 -11.1285000      1
#> 2     1  -0.95  -2.35 -0.86209904 -0.8104365  -1.8120990  -3.1604365      1
#> 3     1  -6.20  -2.30 -1.23565575  0.4038228  -7.4356557  -1.8961772      2
#> 4     1 -13.90  -2.55 -0.13403324  4.4855720 -14.0340332   1.9355720      2
#> 5     1 -14.40  -5.80  0.02812253  2.0297037 -14.3718775  -3.7702963      2
#> 6     1  -3.60  -1.70 -0.09737891  2.2596579  -3.6973789   0.5596579      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6620 -39675   6475 
#> initial  value 998.131940 
#> iter   2 value 802.092574
#> iter   3 value 790.123337
#> iter   4 value 788.155126
#> iter   5 value 754.686635
#> iter   6 value 745.975887
#> iter   7 value 744.577068
#> iter   8 value 744.543447
#> iter   9 value 744.543383
#> iter   9 value 744.543373
#> iter   9 value 744.543366
#> final  value 744.543366 
#> converged
#> This is Run number  85 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.23782935  1.22338909  -0.7878293 -11.3766109      1
#> 2     1  -0.95  -2.35 -0.89027730  0.14954986  -1.8402773  -2.2004501      1
#> 3     1  -6.20  -2.30  0.01225359  2.07308943  -6.1877464  -0.2269106      2
#> 4     1 -13.90  -2.55 -0.56036504 -0.07918101 -14.4603650  -2.6291810      2
#> 5     1 -14.40  -5.80 -0.50471200 -1.03424789 -14.9047120  -6.8342479      2
#> 6     1  -3.60  -1.70  1.39182076  4.74249936  -2.2081792   3.0424994      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6500 -39125   5950 
#> initial  value 998.131940 
#> iter   2 value 813.102193
#> iter   3 value 802.363339
#> iter   4 value 799.959552
#> iter   5 value 764.939601
#> iter   6 value 756.303575
#> iter   7 value 754.747740
#> iter   8 value 754.708418
#> iter   9 value 754.708319
#> iter  10 value 754.708306
#> iter  10 value 754.708306
#> iter  10 value 754.708301
#> final  value 754.708301 
#> converged
#> This is Run number  86 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1           e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.71164782 -0.0003000682  -1.2616478 -12.600300      1
#> 2     1  -0.95  -2.35  0.02092574  1.2677891730  -0.9290743  -1.082211      1
#> 3     1  -6.20  -2.30  0.07405645 -0.9306325511  -6.1259435  -3.230633      2
#> 4     1 -13.90  -2.55 -0.46904329  0.5459137931 -14.3690433  -2.004086      2
#> 5     1 -14.40  -5.80  0.26722338 -0.1514355147 -14.1327766  -5.951436      2
#> 6     1  -3.60  -1.70 -0.10558449  0.0898571504  -3.7055845  -1.610143      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5500 -37025   8075 
#> initial  value 998.131940 
#> iter   2 value 831.429429
#> iter   3 value 817.182107
#> iter   4 value 815.542847
#> iter   5 value 774.386792
#> iter   6 value 766.259396
#> iter   7 value 765.033427
#> iter   8 value 765.014414
#> iter   8 value 765.014405
#> final  value 765.014405 
#> converged
#> This is Run number  87 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.7188451  0.2618778  -1.268845 -12.3381222      1
#> 2     1  -0.95  -2.35  2.2075609  1.6493675   1.257561  -0.7006325      1
#> 3     1  -6.20  -2.30 -0.8432090  2.0008099  -7.043209  -0.2991901      2
#> 4     1 -13.90  -2.55 -0.6457151  0.1147588 -14.545715  -2.4352412      2
#> 5     1 -14.40  -5.80  0.9222172  3.6196986 -13.477783  -2.1803014      2
#> 6     1  -3.60  -1.70 -1.2049979 -0.9766591  -4.804998  -2.6766591      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -39850   7650 
#> initial  value 998.131940 
#> iter   2 value 793.110813
#> iter   3 value 775.933356
#> iter   4 value 773.456835
#> iter   5 value 740.961570
#> iter   6 value 732.397012
#> iter   7 value 731.258090
#> iter   8 value 731.237662
#> iter   8 value 731.237660
#> final  value 731.237660 
#> converged
#> This is Run number  88 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.744638159  1.03020721   1.194638 -11.569793      1
#> 2     1  -0.95  -2.35 -0.793194933 -1.07851091  -1.743195  -3.428511      1
#> 3     1  -6.20  -2.30 -0.007010485  0.61980791  -6.207010  -1.680192      2
#> 4     1 -13.90  -2.55  1.177290376  0.86976812 -12.722710  -1.680232      2
#> 5     1 -14.40  -5.80 -1.132210133  0.72612006 -15.532210  -5.073880      2
#> 6     1  -3.60  -1.70 -0.072517801 -0.06271019  -3.672518  -1.762710      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -38175   6300 
#> initial  value 998.131940 
#> iter   2 value 825.198873
#> iter   3 value 816.019724
#> iter   4 value 814.950279
#> iter   5 value 776.785208
#> iter   6 value 768.364234
#> iter   7 value 766.812165
#> iter   8 value 766.776137
#> iter   9 value 766.776054
#> iter   9 value 766.776054
#> iter   9 value 766.776054
#> final  value 766.776054 
#> converged
#> This is Run number  89 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.4232817  2.07696403   0.8732817 -10.523036      1
#> 2     1  -0.95  -2.35  2.7080865  0.94286474   1.7580865  -1.407135      1
#> 3     1  -6.20  -2.30  3.0254708  0.89297547  -3.1745292  -1.407025      2
#> 4     1 -13.90  -2.55 -1.0799164  0.61342594 -14.9799164  -1.936574      2
#> 5     1 -14.40  -5.80  0.8685468  0.70204311 -13.5314532  -5.097957      2
#> 6     1  -3.60  -1.70 -0.2552806 -0.03218343  -3.8552806  -1.732183      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6500 -39800   6050 
#> initial  value 998.131940 
#> iter   2 value 802.352330
#> iter   3 value 790.135954
#> iter   4 value 787.157110
#> iter   5 value 754.310293
#> iter   6 value 745.562416
#> iter   7 value 744.107272
#> iter   8 value 744.070061
#> iter   9 value 744.069972
#> iter   9 value 744.069962
#> iter   9 value 744.069955
#> final  value 744.069955 
#> converged
#> This is Run number  90 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.44094030 -0.32883801  -0.9909403 -12.928838      1
#> 2     1  -0.95  -2.35  0.87180930  0.39872858  -0.0781907  -1.951271      1
#> 3     1  -6.20  -2.30  0.53070026 -0.31913791  -5.6692997  -2.619138      2
#> 4     1 -13.90  -2.55  1.50135707 -0.31045543 -12.3986429  -2.860455      2
#> 5     1 -14.40  -5.80 -0.06862105 -0.07179713 -14.4686210  -5.871797      2
#> 6     1  -3.60  -1.70  0.23052304  5.12983842  -3.3694770   3.429838      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -37325   7500 
#> initial  value 998.131940 
#> iter   2 value 830.755377
#> iter   3 value 819.355764
#> iter   4 value 818.675097
#> iter   5 value 778.120094
#> iter   6 value 769.875666
#> iter   7 value 768.553430
#> iter   8 value 768.528831
#> iter   9 value 768.528793
#> iter  10 value 768.528780
#> iter  10 value 768.528771
#> iter  10 value 768.528764
#> final  value 768.528764 
#> converged
#> This is Run number  91 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8172137  2.77756144   0.2672137 -9.8224386      1
#> 2     1  -0.95  -2.35  4.8469756  0.09810341   3.8969756 -2.2518966      1
#> 3     1  -6.20  -2.30  0.4007139  0.84027400  -5.7992861 -1.4597260      2
#> 4     1 -13.90  -2.55 -0.1725408  1.84094520 -14.0725408 -0.7090548      2
#> 5     1 -14.40  -5.80  0.8811397  2.08972692 -13.5188603 -3.7102731      2
#> 6     1  -3.60  -1.70  0.1976318 -1.13201925  -3.4023682 -2.8320192      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6400 -37850   6275 
#> initial  value 998.131940 
#> iter   2 value 830.048550
#> iter   3 value 820.774742
#> iter   4 value 819.462971
#> iter   5 value 780.467786
#> iter   6 value 772.128770
#> iter   7 value 770.585173
#> iter   8 value 770.550348
#> iter   9 value 770.550270
#> iter   9 value 770.550270
#> iter   9 value 770.550270
#> final  value 770.550270 
#> converged
#> This is Run number  92 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.3782552  0.5277570  -0.9282552 -12.0722430      1
#> 2     1  -0.95  -2.35  0.3848940  1.7450431  -0.5651060  -0.6049569      1
#> 3     1  -6.20  -2.30  1.2760597  0.1427823  -4.9239403  -2.1572177      2
#> 4     1 -13.90  -2.55  0.2774260 -0.8705159 -13.6225740  -3.4205159      2
#> 5     1 -14.40  -5.80 -0.6837159  0.7658291 -15.0837159  -5.0341709      2
#> 6     1  -3.60  -1.70 -0.5557368  1.8227113  -4.1557368   0.1227113      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6760 -40900   8025 
#> initial  value 998.131940 
#> iter   2 value 773.525140
#> iter   3 value 755.780727
#> iter   4 value 754.784495
#> iter   5 value 725.218662
#> iter   6 value 716.705448
#> iter   7 value 715.693984
#> iter   8 value 715.678378
#> iter   9 value 715.678363
#> iter   9 value 715.678358
#> iter   9 value 715.678358
#> final  value 715.678358 
#> converged
#> This is Run number  93 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.42406469 -0.45506422  -0.1259353 -13.0550642      1
#> 2     1  -0.95  -2.35  0.26999715  1.10979980  -0.6800028  -1.2402002      1
#> 3     1  -6.20  -2.30 -0.53698555 -1.93636105  -6.7369856  -4.2363611      2
#> 4     1 -13.90  -2.55  0.42871830  0.02752338 -13.4712817  -2.5224766      2
#> 5     1 -14.40  -5.80  0.02837421  0.17888129 -14.3716258  -5.6211187      2
#> 6     1  -3.60  -1.70  3.16162656  0.87174521  -0.4383734  -0.8282548      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7340 -40575   5175 
#> initial  value 998.131940 
#> iter   2 value 793.018991
#> iter   3 value 784.664339
#> iter   4 value 782.695933
#> iter   5 value 751.848644
#> iter   6 value 743.072806
#> iter   7 value 741.320183
#> iter   8 value 741.265254
#> iter   9 value 741.265030
#> iter  10 value 741.265009
#> iter  10 value 741.265009
#> iter  11 value 741.264996
#> iter  11 value 741.264993
#> iter  11 value 741.264990
#> final  value 741.264990 
#> converged
#> This is Run number  94 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.7860526  0.2175871   0.2360526 -12.382413      1
#> 2     1  -0.95  -2.35  1.4269285 -0.3319648   0.4769285  -2.681965      1
#> 3     1  -6.20  -2.30  1.6028516 -0.7671012  -4.5971484  -3.067101      2
#> 4     1 -13.90  -2.55 -0.5500101 -0.6169612 -14.4500101  -3.166961      2
#> 5     1 -14.40  -5.80  0.6854648 -0.7490042 -13.7145352  -6.549004      2
#> 6     1  -3.60  -1.70 -1.0744341  0.6171008  -4.6744341  -1.082899      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7040 -37875   6500 
#> initial  value 998.131940 
#> iter   2 value 827.873844
#> iter   3 value 819.910406
#> iter   4 value 819.823583
#> iter   5 value 780.536525
#> iter   6 value 772.212288
#> iter   7 value 770.626266
#> iter   8 value 770.589427
#> iter   9 value 770.589330
#> iter  10 value 770.589313
#> iter  10 value 770.589304
#> iter  10 value 770.589297
#> final  value 770.589297 
#> converged
#> This is Run number  95 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.52030281 -1.0448761  -1.0703028 -13.644876      1
#> 2     1  -0.95  -2.35  0.50106016  0.1937960  -0.4489398  -2.156204      1
#> 3     1  -6.20  -2.30  1.13885214  5.1724104  -5.0611479   2.872410      2
#> 4     1 -13.90  -2.55  0.07858258  0.4218970 -13.8214174  -2.128103      2
#> 5     1 -14.40  -5.80  2.27074668 -0.1716853 -12.1292533  -5.971685      2
#> 6     1  -3.60  -1.70 -1.19075772 -0.2243023  -4.7907577  -1.924302      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5840 -37925   6300 
#> initial  value 998.131940 
#> iter   2 value 829.153988
#> iter   3 value 816.959339
#> iter   4 value 813.984339
#> iter   5 value 775.667894
#> iter   6 value 767.263657
#> iter   7 value 765.802217
#> iter   8 value 765.770403
#> iter   9 value 765.770341
#> iter   9 value 765.770331
#> iter   9 value 765.770326
#> final  value 765.770326 
#> converged
#> This is Run number  96 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.4619269  0.1830388  -0.08807309 -12.416961      1
#> 2     1  -0.95  -2.35 -1.1055677  1.2947104  -2.05556768  -1.055290      2
#> 3     1  -6.20  -2.30 -0.9920002  0.7381641  -7.19200015  -1.561836      2
#> 4     1 -13.90  -2.55  1.2400074 -1.8832944 -12.65999258  -4.433294      2
#> 5     1 -14.40  -5.80 -0.8096838  1.3550804 -15.20968378  -4.444920      2
#> 6     1  -3.60  -1.70  1.3494219  4.5936374  -2.25057807   2.893637      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5540 -36625   7350 
#> initial  value 998.131940 
#> iter   2 value 841.160825
#> iter   3 value 829.191831
#> iter   4 value 827.394110
#> iter   5 value 785.186479
#> iter   6 value 777.164053
#> iter   7 value 775.854991
#> iter   8 value 775.831950
#> iter   9 value 775.831919
#> iter   9 value 775.831908
#> iter   9 value 775.831903
#> final  value 775.831903 
#> converged
#> This is Run number  97 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.001834528  0.1211372  -0.5481655 -12.47886279      1
#> 2     1  -0.95  -2.35 -0.364888939  1.0070213  -1.3148889  -1.34297872      1
#> 3     1  -6.20  -2.30 -1.023418534  2.2813831  -7.2234185  -0.01861692      2
#> 4     1 -13.90  -2.55  0.084338947 -0.5288091 -13.8156611  -3.07880910      2
#> 5     1 -14.40  -5.80  1.765133967 -1.6300936 -12.6348660  -7.43009358      2
#> 6     1  -3.60  -1.70  0.401290546  1.9348229  -3.1987095   0.23482287      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -37975   6400 
#> initial  value 998.131940 
#> iter   2 value 827.830640
#> iter   3 value 817.119439
#> iter   4 value 815.163047
#> iter   5 value 776.729990
#> iter   6 value 768.343618
#> iter   7 value 766.859410
#> iter   8 value 766.826619
#> iter   9 value 766.826554
#> iter   9 value 766.826543
#> iter   9 value 766.826537
#> final  value 766.826537 
#> converged
#> This is Run number  98 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2214239  0.23385145  -0.7714239 -12.3661486      1
#> 2     1  -0.95  -2.35  0.1485121  2.05537818  -0.8014879  -0.2946218      2
#> 3     1  -6.20  -2.30 -0.5975881 -0.08669776  -6.7975881  -2.3866978      2
#> 4     1 -13.90  -2.55 -0.5028826  0.77572753 -14.4028826  -1.7742725      2
#> 5     1 -14.40  -5.80 -1.0752891 -0.56008177 -15.4752891  -6.3600818      2
#> 6     1  -3.60  -1.70  1.7581633 -0.53301247  -1.8418367  -2.2330125      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6760 -39125   7225 
#> initial  value 998.131940 
#> iter   2 value 806.211272
#> iter   3 value 794.130963
#> iter   4 value 793.577324
#> iter   5 value 758.186887
#> iter   6 value 749.557951
#> iter   7 value 748.233117
#> iter   8 value 748.204899
#> iter   9 value 748.204853
#> iter  10 value 748.204839
#> iter  10 value 748.204830
#> iter  10 value 748.204822
#> final  value 748.204822 
#> converged
#> This is Run number  99 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1       e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.06519970 0.2946808   0.5151997 -12.3053192      1
#> 2     1  -0.95  -2.35  0.36221651 0.2169767  -0.5877835  -2.1330233      1
#> 3     1  -6.20  -2.30 -0.15168121 2.4710551  -6.3516812   0.1710551      2
#> 4     1 -13.90  -2.55  2.97693647 1.4339706 -10.9230635  -1.1160294      2
#> 5     1 -14.40  -5.80  0.00316157 0.9153798 -14.3968384  -4.8846202      2
#> 6     1  -3.60  -1.70  1.30588506 1.3028120  -2.2941149  -0.3971880      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5540 -37725   7425 
#> initial  value 998.131940 
#> iter   2 value 825.897094
#> iter   3 value 811.151912
#> iter   4 value 808.437890
#> iter   5 value 769.592293
#> iter   6 value 761.286919
#> iter   7 value 760.005446
#> iter   8 value 759.982305
#> iter   9 value 759.982279
#> iter   9 value 759.982270
#> iter   9 value 759.982265
#> final  value 759.982265 
#> converged
#> This is Run number  100 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2           U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5424929  0.8393994  -0.007507102 -11.760601      1
#> 2     1  -0.95  -2.35  1.3364321 -0.5358660   0.386432058  -2.885866      1
#> 3     1  -6.20  -2.30  3.2140910 -0.3558320  -2.985909045  -2.655832      2
#> 4     1 -13.90  -2.55 -1.1102428  1.6823350 -15.010242773  -0.867665      2
#> 5     1 -14.40  -5.80 -0.8430685  1.5801660 -15.243068486  -4.219834      2
#> 6     1  -3.60  -1.70 -0.3074278  0.3142555  -3.907427819  -1.385744      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5860 -37450   6825 
#> initial  value 998.131940 
#> iter   2 value 833.021894
#> iter   3 value 821.415000
#> iter   4 value 819.414169
#> iter   5 value 779.545122
#> iter   6 value 771.290314
#> iter   7 value 769.895365
#> iter   8 value 769.867357
#> iter   9 value 769.867311
#> iter   9 value 769.867300
#> iter   9 value 769.867295
#> final  value 769.867295 
#> converged
#> This is Run number  101 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4177567  1.1234849  -0.9677567 -11.476515      1
#> 2     1  -0.95  -2.35 -0.8108214  0.2932045  -1.7608214  -2.056796      1
#> 3     1  -6.20  -2.30 -0.7437990  1.1748935  -6.9437990  -1.125107      2
#> 4     1 -13.90  -2.55 -0.2841491 -0.5240037 -14.1841491  -3.074004      2
#> 5     1 -14.40  -5.80  2.0962448  1.6465735 -12.3037552  -4.153427      2
#> 6     1  -3.60  -1.70  0.5646285  0.9756100  -3.0353715  -0.724390      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6180 -40125   7000 
#> initial  value 998.131940 
#> iter   2 value 792.574507
#> iter   3 value 776.314691
#> iter   4 value 772.897455
#> iter   5 value 741.332557
#> iter   6 value 732.660217
#> iter   7 value 731.467736
#> iter   8 value 731.442932
#> iter   9 value 731.442906
#> iter   9 value 731.442900
#> iter   9 value 731.442896
#> final  value 731.442896 
#> converged
#> This is Run number  102 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1628389 -1.1173058  -0.3871611 -13.717306      1
#> 2     1  -0.95  -2.35  0.4535009  1.3115566  -0.4964991  -1.038443      1
#> 3     1  -6.20  -2.30  1.8628134 -0.1766261  -4.3371866  -2.476626      2
#> 4     1 -13.90  -2.55 -0.3649576  0.4817129 -14.2649576  -2.068287      2
#> 5     1 -14.40  -5.80  2.8226493 -0.7196365 -11.5773507  -6.519637      2
#> 6     1  -3.60  -1.70  0.9927357  0.1253296  -2.6072643  -1.574670      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5440 -37450   8125 
#> initial  value 998.131940 
#> iter   2 value 825.356584
#> iter   3 value 809.639500
#> iter   4 value 807.503829
#> iter   5 value 767.735343
#> iter   6 value 759.529343
#> iter   7 value 758.317293
#> iter   8 value 758.298615
#> iter   9 value 758.298600
#> iter   9 value 758.298598
#> iter  10 value 758.298587
#> iter  10 value 758.298579
#> iter  10 value 758.298579
#> final  value 758.298579 
#> converged
#> This is Run number  103 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.07796849  1.3753498  -0.4720315 -11.224650      1
#> 2     1  -0.95  -2.35 -0.06360688  0.9425686  -1.0136069  -1.407431      1
#> 3     1  -6.20  -2.30  0.08685488 -0.6554985  -6.1131451  -2.955499      2
#> 4     1 -13.90  -2.55 -0.66296248  1.3728537 -14.5629625  -1.177146      2
#> 5     1 -14.40  -5.80  1.67964597  2.4150648 -12.7203540  -3.384935      2
#> 6     1  -3.60  -1.70  0.09866260  0.5150201  -3.5013374  -1.184980      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7180 -40400   6400 
#> initial  value 998.131940 
#> iter   2 value 790.484082
#> iter   3 value 779.725808
#> iter   4 value 778.723689
#> iter   5 value 747.099805
#> iter   6 value 738.300139
#> iter   7 value 736.900041
#> iter   8 value 736.864265
#> iter   9 value 736.864191
#> iter  10 value 736.864179
#> iter  10 value 736.864173
#> iter  10 value 736.864166
#> final  value 736.864166 
#> converged
#> This is Run number  104 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.5828111 -0.53231778   1.032811 -13.132318      1
#> 2     1  -0.95  -2.35 -0.2370028  0.52920908  -1.187003  -1.820791      1
#> 3     1  -6.20  -2.30  0.5973776  3.61496297  -5.602622   1.314963      2
#> 4     1 -13.90  -2.55 -0.1884095 -0.31090653 -14.088409  -2.860907      2
#> 5     1 -14.40  -5.80  1.1612007 -0.06128768 -13.238799  -5.861288      2
#> 6     1  -3.60  -1.70  0.6454892 -0.80832087  -2.954511  -2.508321      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5620 -38275   7525 
#> initial  value 998.131940 
#> iter   2 value 817.536131
#> iter   3 value 801.675184
#> iter   4 value 798.781680
#> iter   5 value 761.613672
#> iter   6 value 753.209023
#> iter   7 value 751.960521
#> iter   8 value 751.938043
#> iter   9 value 751.938021
#> iter   9 value 751.938013
#> iter   9 value 751.938008
#> final  value 751.938008 
#> converged
#> This is Run number  105 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.40524442 -0.5430965   0.8552444 -13.143097      1
#> 2     1  -0.95  -2.35  0.06301837 -0.4978175  -0.8869816  -2.847817      1
#> 3     1  -6.20  -2.30 -0.27339252 -0.8589458  -6.4733925  -3.158946      2
#> 4     1 -13.90  -2.55  0.40597044 -0.3665527 -13.4940296  -2.916553      2
#> 5     1 -14.40  -5.80  0.99030336 -1.0762871 -13.4096966  -6.876287      2
#> 6     1  -3.60  -1.70  0.14650550 -0.7617994  -3.4534945  -2.461799      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6960 -40425   5050 
#> initial  value 998.131940 
#> iter   2 value 796.402308
#> iter   3 value 786.462839
#> iter   4 value 783.330902
#> iter   5 value 752.354794
#> iter   6 value 743.546725
#> iter   7 value 741.822076
#> iter   8 value 741.766938
#> iter   9 value 741.766669
#> iter  10 value 741.766643
#> iter  10 value 741.766642
#> iter  11 value 741.766625
#> iter  11 value 741.766619
#> iter  11 value 741.766616
#> final  value 741.766616 
#> converged
#> This is Run number  106 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.3706653 -0.6501890  -0.1793347 -13.25018899      1
#> 2     1  -0.95  -2.35 -0.1868625  2.7003048  -1.1368625   0.35030479      2
#> 3     1  -6.20  -2.30  2.2690864  4.4052166  -3.9309136   2.10521657      2
#> 4     1 -13.90  -2.55  4.6366917  2.5933194  -9.2633083   0.04331944      2
#> 5     1 -14.40  -5.80 -0.2063270  0.5632061 -14.6063270  -5.23679388      2
#> 6     1  -3.60  -1.70  0.1576100 -0.2597351  -3.4423900  -1.95973514      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5960 -38625   7950 
#> initial  value 998.131940 
#> iter   2 value 809.775970
#> iter   3 value 793.933928
#> iter   4 value 792.285217
#> iter   5 value 755.875833
#> iter   6 value 747.431923
#> iter   7 value 746.237832
#> iter   8 value 746.217828
#> iter   9 value 746.217812
#> iter   9 value 746.217809
#> iter  10 value 746.217797
#> iter  10 value 746.217788
#> iter  10 value 746.217786
#> final  value 746.217786 
#> converged
#> This is Run number  107 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.4762951 -0.6836320   0.9262951 -13.2836320      1
#> 2     1  -0.95  -2.35 -0.4807399  1.0827014  -1.4307399  -1.2672986      2
#> 3     1  -6.20  -2.30  0.6813360  1.5812004  -5.5186640  -0.7187996      2
#> 4     1 -13.90  -2.55  1.7734735  2.1870237 -12.1265265  -0.3629763      2
#> 5     1 -14.40  -5.80 -0.9053541  0.3587707 -15.3053541  -5.4412293      2
#> 6     1  -3.60  -1.70  1.4485602  4.7696816  -2.1514398   3.0696816      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -38575   7450 
#> initial  value 998.131940 
#> iter   2 value 813.171740
#> iter   3 value 800.922688
#> iter   4 value 800.432948
#> iter   5 value 763.447755
#> iter   6 value 754.915769
#> iter   7 value 753.606315
#> iter   8 value 753.580189
#> iter   9 value 753.580148
#> iter  10 value 753.580135
#> iter  10 value 753.580126
#> iter  10 value 753.580118
#> final  value 753.580118 
#> converged
#> This is Run number  108 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 1.2464269  2.4212451   0.6964269 -10.178755      1
#> 2     1  -0.95  -2.35 4.4072346 -1.4690220   3.4572346  -3.819022      1
#> 3     1  -6.20  -2.30 1.2752983  0.6047428  -4.9247017  -1.695257      2
#> 4     1 -13.90  -2.55 1.0704427 -0.1757256 -12.8295573  -2.725726      2
#> 5     1 -14.40  -5.80 1.0463270 -0.1008591 -13.3536730  -5.900859      2
#> 6     1  -3.60  -1.70 0.2063991  7.3843605  -3.3936009   5.684360      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -39800   6925 
#> initial  value 998.131940 
#> iter   2 value 797.959726
#> iter   3 value 783.718605
#> iter   4 value 781.325700
#> iter   5 value 748.458307
#> iter   6 value 739.776260
#> iter   7 value 738.507520
#> iter   8 value 738.479953
#> iter   9 value 738.479915
#> iter   9 value 738.479907
#> iter   9 value 738.479901
#> final  value 738.479901 
#> converged
#> This is Run number  109 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.39172647 -0.05203641  -0.1582735 -12.6520364      1
#> 2     1  -0.95  -2.35  0.35006235  0.18508616  -0.5999376  -2.1649138      1
#> 3     1  -6.20  -2.30 -0.10029407  2.41787591  -6.3002941   0.1178759      2
#> 4     1 -13.90  -2.55  1.26744572  3.91574939 -12.6325543   1.3657494      2
#> 5     1 -14.40  -5.80 -1.26637011 -0.98797537 -15.6663701  -6.7879754      2
#> 6     1  -3.60  -1.70  0.03827256  1.82511702  -3.5617274   0.1251170      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6040 -39400   6775 
#> initial  value 998.131940 
#> iter   2 value 805.087619
#> iter   3 value 790.091283
#> iter   4 value 786.704589
#> iter   5 value 752.878187
#> iter   6 value 744.227483
#> iter   7 value 742.932781
#> iter   8 value 742.904817
#> iter   9 value 742.904778
#> iter   9 value 742.904770
#> iter   9 value 742.904766
#> final  value 742.904766 
#> converged
#> This is Run number  110 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0910901  0.90853720  -1.6410901 -11.6914628      1
#> 2     1  -0.95  -2.35  1.3017514 -1.00060731   0.3517514  -3.3506073      1
#> 3     1  -6.20  -2.30  1.2648228 -0.05677941  -4.9351772  -2.3567794      2
#> 4     1 -13.90  -2.55  0.3140348  1.90530349 -13.5859652  -0.6446965      2
#> 5     1 -14.40  -5.80  0.2810206  0.57483531 -14.1189794  -5.2251647      2
#> 6     1  -3.60  -1.70  0.7601856  0.34027990  -2.8398144  -1.3597201      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5940 -38125   6575 
#> initial  value 998.131940 
#> iter   2 value 824.912812
#> iter   3 value 812.553499
#> iter   4 value 809.950878
#> iter   5 value 772.140296
#> iter   6 value 763.706414
#> iter   7 value 762.287589
#> iter   8 value 762.257174
#> iter   9 value 762.257121
#> iter   9 value 762.257111
#> iter   9 value 762.257106
#> final  value 762.257106 
#> converged
#> This is Run number  111 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1       e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.8058212 0.5478766  -2.35582117 -12.052123      1
#> 2     1  -0.95  -2.35  0.8956382 3.9970831  -0.05436175   1.647083      2
#> 3     1  -6.20  -2.30 -1.0416625 1.2273396  -7.24166246  -1.072660      2
#> 4     1 -13.90  -2.55  1.2373552 0.3883678 -12.66264480  -2.161632      2
#> 5     1 -14.40  -5.80  2.2001644 1.0020730 -12.19983560  -4.797927      2
#> 6     1  -3.60  -1.70  0.3534812 0.4687166  -3.24651883  -1.231283      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -39400   6700 
#> initial  value 998.131940 
#> iter   2 value 805.065551
#> iter   3 value 793.444220
#> iter   4 value 792.117019
#> iter   5 value 757.657785
#> iter   6 value 748.986708
#> iter   7 value 747.595235
#> iter   8 value 747.562878
#> iter   9 value 747.562819
#> iter  10 value 747.562807
#> iter  10 value 747.562799
#> iter  10 value 747.562793
#> final  value 747.562793 
#> converged
#> This is Run number  112 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.3826689 -1.24161744   0.8326689 -13.8416174      1
#> 2     1  -0.95  -2.35  0.3772576  3.33768768  -0.5727424   0.9876877      2
#> 3     1  -6.20  -2.30  0.2983948 -0.67344002  -5.9016052  -2.9734400      2
#> 4     1 -13.90  -2.55 -0.0890675  3.88421060 -13.9890675   1.3342106      2
#> 5     1 -14.40  -5.80  3.0158876 -0.62171061 -11.3841124  -6.4217106      2
#> 6     1  -3.60  -1.70  0.9935424 -0.08074774  -2.6064576  -1.7807477      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -39875   7375 
#> initial  value 998.131940 
#> iter   2 value 794.308919
#> iter   3 value 778.338280
#> iter   4 value 775.959628
#> iter   5 value 743.431949
#> iter   6 value 734.810346
#> iter   7 value 733.630021
#> iter   8 value 733.607087
#> iter   9 value 733.607066
#> iter   9 value 733.607059
#> iter   9 value 733.607058
#> final  value 733.607058 
#> converged
#> This is Run number  113 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 0.3519052 -0.22087558  -0.1980948 -12.8208756      1
#> 2     1  -0.95  -2.35 1.2378199 -0.07860796   0.2878199  -2.4286080      1
#> 3     1  -6.20  -2.30 0.4250086  2.64291920  -5.7749914   0.3429192      2
#> 4     1 -13.90  -2.55 0.6505979 -0.56735223 -13.2494021  -3.1173522      2
#> 5     1 -14.40  -5.80 0.8804580 -0.51777450 -13.5195420  -6.3177745      2
#> 6     1  -3.60  -1.70 0.2589436 -0.02692288  -3.3410564  -1.7269229      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6620 -39150   6775 
#> initial  value 998.131940 
#> iter   2 value 808.487918
#> iter   3 value 796.925104
#> iter   4 value 795.689517
#> iter   5 value 760.472944
#> iter   6 value 751.841719
#> iter   7 value 750.448134
#> iter   8 value 750.416367
#> iter   9 value 750.416309
#> iter  10 value 750.416297
#> iter  10 value 750.416288
#> iter  10 value 750.416282
#> final  value 750.416282 
#> converged
#> This is Run number  114 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.603536490  4.4812340  -1.1535365 -8.11876598      1
#> 2     1  -0.95  -2.35  1.290789430  2.2773126   0.3407894 -0.07268735      1
#> 3     1  -6.20  -2.30  0.003402257  5.9140531  -6.1965977  3.61405310      2
#> 4     1 -13.90  -2.55  2.397009249  0.9084427 -11.5029908 -1.64155726      2
#> 5     1 -14.40  -5.80  0.742565603 -0.4794452 -13.6574344 -6.27944515      2
#> 6     1  -3.60  -1.70  1.486062314 -0.2661207  -2.1139377 -1.96612070      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6500 -37400   6925 
#> initial  value 998.131940 
#> iter   2 value 832.765736
#> iter   3 value 823.424745
#> iter   4 value 823.020686
#> iter   5 value 782.559148
#> iter   6 value 774.309776
#> iter   7 value 772.861929
#> iter   8 value 772.831602
#> iter   9 value 772.831539
#> iter  10 value 772.831523
#> iter  10 value 772.831513
#> iter  10 value 772.831508
#> final  value 772.831508 
#> converged
#> This is Run number  115 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1       e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5331682 1.3911256  -0.0168318 -11.208874      1
#> 2     1  -0.95  -2.35 -1.3483805 1.1460807  -2.2983805  -1.203919      2
#> 3     1  -6.20  -2.30 -0.6134916 0.0323085  -6.8134916  -2.267692      2
#> 4     1 -13.90  -2.55  1.9731837 1.1929599 -11.9268163  -1.357040      2
#> 5     1 -14.40  -5.80 -0.1644487 3.4581791 -14.5644487  -2.341821      2
#> 6     1  -3.60  -1.70  1.6290556 0.4892958  -1.9709444  -1.210704      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -37250   6025 
#> initial  value 998.131940 
#> iter   2 value 839.546954
#> iter   3 value 831.298995
#> iter   4 value 830.002911
#> iter   5 value 789.364037
#> iter   6 value 781.212880
#> iter   7 value 779.624756
#> iter   8 value 779.589912
#> iter   9 value 779.589831
#> iter   9 value 779.589820
#> iter   9 value 779.589816
#> final  value 779.589816 
#> converged
#> This is Run number  116 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.06747118 -1.0469348  -0.4825288 -13.646935      1
#> 2     1  -0.95  -2.35  2.01765020  0.5799595   1.0676502  -1.770041      1
#> 3     1  -6.20  -2.30 -0.75327868  1.0381586  -6.9532787  -1.261841      2
#> 4     1 -13.90  -2.55  0.66372100  1.4667980 -13.2362790  -1.083202      2
#> 5     1 -14.40  -5.80  1.91002904  3.0442269 -12.4899710  -2.755773      2
#> 6     1  -3.60  -1.70  1.64466850 -0.5971875  -1.9553315  -2.297188      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -38775   6900 
#> initial  value 998.131940 
#> iter   2 value 813.306633
#> iter   3 value 802.338936
#> iter   4 value 801.590755
#> iter   5 value 765.141387
#> iter   6 value 756.570232
#> iter   7 value 755.161933
#> iter   8 value 755.130457
#> iter   9 value 755.130397
#> iter  10 value 755.130382
#> iter  10 value 755.130372
#> iter  10 value 755.130365
#> final  value 755.130365 
#> converged
#> This is Run number  117 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.4045822  0.4387684   0.8545822 -12.161232      1
#> 2     1  -0.95  -2.35  1.3983074  3.4322257   0.4483074   1.082226      2
#> 3     1  -6.20  -2.30 -1.3395984  0.9512213  -7.5395984  -1.348779      2
#> 4     1 -13.90  -2.55 -0.4738667 -0.5406114 -14.3738667  -3.090611      2
#> 5     1 -14.40  -5.80 -0.6829639  2.0351891 -15.0829639  -3.764811      2
#> 6     1  -3.60  -1.70  1.6339875  3.2106441  -1.9660125   1.510644      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7100 -39175   6575 
#> initial  value 998.131940 
#> iter   2 value 808.623354
#> iter   3 value 799.000421
#> iter   4 value 798.628478
#> iter   5 value 763.169641
#> iter   6 value 754.523404
#> iter   7 value 753.024454
#> iter   8 value 752.987845
#> iter   9 value 752.987760
#> iter  10 value 752.987743
#> iter  10 value 752.987734
#> iter  10 value 752.987727
#> final  value 752.987727 
#> converged
#> This is Run number  118 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6235698 -0.1444569  -1.1735698 -12.744457      1
#> 2     1  -0.95  -2.35  0.5702282 -0.8272312  -0.3797718  -3.177231      1
#> 3     1  -6.20  -2.30 -0.7591878  4.6361855  -6.9591878   2.336186      2
#> 4     1 -13.90  -2.55 -0.1806253  0.7253241 -14.0806253  -1.824676      2
#> 5     1 -14.40  -5.80 -0.2472027  2.1010108 -14.6472027  -3.698989      2
#> 6     1  -3.60  -1.70 -0.7508465 -0.4454714  -4.3508465  -2.145471      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6000 -38475   7200 
#> initial  value 998.131940 
#> iter   2 value 816.471785
#> iter   3 value 802.714777
#> iter   4 value 800.600099
#> iter   5 value 763.746666
#> iter   6 value 755.268351
#> iter   7 value 753.960391
#> iter   8 value 753.934366
#> iter   9 value 753.934331
#> iter   9 value 753.934320
#> iter   9 value 753.934315
#> final  value 753.934315 
#> converged
#> This is Run number  119 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.73532364  0.5536026   0.1853236 -12.0463974      1
#> 2     1  -0.95  -2.35  1.06250084 -0.8391651   0.1125008  -3.1891651      1
#> 3     1  -6.20  -2.30  0.13021923 -0.7465294  -6.0697808  -3.0465294      2
#> 4     1 -13.90  -2.55  1.61984241  0.1540740 -12.2801576  -2.3959260      2
#> 5     1 -14.40  -5.80 -0.01241165  4.5142412 -14.4124117  -1.2857588      2
#> 6     1  -3.60  -1.70 -0.76568476  0.9609069  -4.3656848  -0.7390931      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6900 -40675   6575 
#> initial  value 998.131940 
#> iter   2 value 785.510710
#> iter   3 value 772.756777
#> iter   4 value 770.895300
#> iter   5 value 740.440300
#> iter   6 value 731.657421
#> iter   7 value 730.378372
#> iter   8 value 730.347558
#> iter   9 value 730.347508
#> iter   9 value 730.347507
#> iter   9 value 730.347507
#> final  value 730.347507 
#> converged
#> This is Run number  120 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.01594104  4.1415568  -0.5659410 -8.458443      1
#> 2     1  -0.95  -2.35  1.34969009  0.1006979   0.3996901 -2.249302      1
#> 3     1  -6.20  -2.30 -0.82920188 -1.0474885  -7.0292019 -3.347488      2
#> 4     1 -13.90  -2.55 -0.54090910  0.2416173 -14.4409091 -2.308383      2
#> 5     1 -14.40  -5.80  0.03498942 -0.2569341 -14.3650106 -6.056934      2
#> 6     1  -3.60  -1.70  1.45119880  1.4463160  -2.1488012 -0.253684      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5880 -37025   6550 
#> initial  value 998.131940 
#> iter   2 value 840.204456
#> iter   3 value 829.913440
#> iter   4 value 828.081264
#> iter   5 value 786.992376
#> iter   6 value 778.866204
#> iter   7 value 777.423344
#> iter   8 value 777.394222
#> iter   9 value 777.394169
#> iter   9 value 777.394167
#> iter   9 value 777.394167
#> final  value 777.394167 
#> converged
#> This is Run number  121 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.007398645 -0.6456223  -0.5573986 -13.2456223      1
#> 2     1  -0.95  -2.35  2.755982139 -1.4123493   1.8059821  -3.7623493      1
#> 3     1  -6.20  -2.30 -0.962504418  1.8263480  -7.1625044  -0.4736520      2
#> 4     1 -13.90  -2.55 -0.738591477 -0.4129857 -14.6385915  -2.9629857      2
#> 5     1 -14.40  -5.80  0.921618417  3.8217972 -13.4783816  -1.9782028      2
#> 6     1  -3.60  -1.70  0.368379844  1.0427421  -3.2316202  -0.6572579      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6620 -39000   6425 
#> initial  value 998.131940 
#> iter   2 value 812.553482
#> iter   3 value 801.917743
#> iter   4 value 800.469960
#> iter   5 value 764.820947
#> iter   6 value 756.213543
#> iter   7 value 754.735317
#> iter   8 value 754.700099
#> iter   9 value 754.700025
#> iter  10 value 754.700013
#> iter  10 value 754.700006
#> iter  10 value 754.700006
#> final  value 754.700006 
#> converged
#> This is Run number  122 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.1044082 -1.0239845   0.5544082 -13.6239845      1
#> 2     1  -0.95  -2.35  1.8460893 -0.3844123   0.8960893  -2.7344123      1
#> 3     1  -6.20  -2.30  4.6929555  0.2772338  -1.5070445  -2.0227662      1
#> 4     1 -13.90  -2.55 -0.6429437  1.7768983 -14.5429437  -0.7731017      2
#> 5     1 -14.40  -5.80  0.1151027 -1.2141846 -14.2848973  -7.0141846      2
#> 6     1  -3.60  -1.70  2.2423465  0.3866359  -1.3576535  -1.3133641      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -39975   6725 
#> initial  value 998.131940 
#> iter   2 value 796.078869
#> iter   3 value 783.337508
#> iter   4 value 781.563694
#> iter   5 value 748.983905
#> iter   6 value 740.254234
#> iter   7 value 738.934391
#> iter   8 value 738.903793
#> iter   9 value 738.903743
#> iter   9 value 738.903743
#> iter   9 value 738.903743
#> final  value 738.903743 
#> converged
#> This is Run number  123 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4958699  0.4953689  -1.0458699 -12.1046311      1
#> 2     1  -0.95  -2.35  0.8843669  2.6466201  -0.0656331   0.2966201      2
#> 3     1  -6.20  -2.30 -0.7861591  0.7865901  -6.9861591  -1.5134099      2
#> 4     1 -13.90  -2.55 -0.8921643  1.7033495 -14.7921643  -0.8466505      2
#> 5     1 -14.40  -5.80  1.3302444 -1.3219559 -13.0697556  -7.1219559      2
#> 6     1  -3.60  -1.70  0.1916989 -0.4053545  -3.4083011  -2.1053545      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -38575   5850 
#> initial  value 998.131940 
#> iter   2 value 821.834037
#> iter   3 value 811.011828
#> iter   4 value 808.291189
#> iter   5 value 771.753259
#> iter   6 value 763.214772
#> iter   7 value 761.632365
#> iter   8 value 761.593493
#> iter   9 value 761.593391
#> iter  10 value 761.593378
#> iter  10 value 761.593377
#> iter  10 value 761.593372
#> final  value 761.593372 
#> converged
#> This is Run number  124 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2104237  0.09877969  -0.7604237 -12.5012203      1
#> 2     1  -0.95  -2.35  2.0589260  1.08507825   1.1089260  -1.2649218      1
#> 3     1  -6.20  -2.30  3.1514716 -0.68329469  -3.0485284  -2.9832947      2
#> 4     1 -13.90  -2.55  1.1270583 -0.62843630 -12.7729417  -3.1784363      2
#> 5     1 -14.40  -5.80  1.4032159 -0.33711845 -12.9967841  -6.1371184      2
#> 6     1  -3.60  -1.70 -0.7215012  1.10637593  -4.3215012  -0.5936241      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5880 -39100   7250 
#> initial  value 998.131940 
#> iter   2 value 807.024467
#> iter   3 value 791.045094
#> iter   4 value 787.929812
#> iter   5 value 753.234479
#> iter   6 value 744.677040
#> iter   7 value 743.436278
#> iter   8 value 743.412094
#> iter   9 value 743.412068
#> iter   9 value 743.412061
#> iter   9 value 743.412056
#> final  value 743.412056 
#> converged
#> This is Run number  125 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.28295939  1.4161426  -0.2670406 -11.1838574      1
#> 2     1  -0.95  -2.35  2.29162878  1.4828809   1.3416288  -0.8671191      1
#> 3     1  -6.20  -2.30  0.13773400  1.0801234  -6.0622660  -1.2198766      2
#> 4     1 -13.90  -2.55 -1.10820683  0.2308282 -15.0082068  -2.3191718      2
#> 5     1 -14.40  -5.80 -0.02794952 -0.2549103 -14.4279495  -6.0549103      2
#> 6     1  -3.60  -1.70  2.24755125 -1.0006981  -1.3524487  -2.7006981      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5960 -38700   6875 
#> initial  value 998.131940 
#> iter   2 value 815.023033
#> iter   3 value 801.068300
#> iter   4 value 798.261613
#> iter   5 value 762.216639
#> iter   6 value 753.678486
#> iter   7 value 752.342646
#> iter   8 value 752.314655
#> iter   9 value 752.314615
#> iter   9 value 752.314606
#> iter   9 value 752.314601
#> final  value 752.314601 
#> converged
#> This is Run number  126 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  3.1859691 -0.8381323   2.6359691 -13.4381323      1
#> 2     1  -0.95  -2.35  1.1883152 -0.8078310   0.2383152  -3.1578310      1
#> 3     1  -6.20  -2.30  0.7620435  3.6183367  -5.4379565   1.3183367      2
#> 4     1 -13.90  -2.55  1.0069732  1.9725617 -12.8930268  -0.5774383      2
#> 5     1 -14.40  -5.80 -0.2800473  1.2369484 -14.6800473  -4.5630516      2
#> 6     1  -3.60  -1.70  4.4138473  3.1231985   0.8138473   1.4231985      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6100 -38775   6575 
#> initial  value 998.131940 
#> iter   2 value 815.460942
#> iter   3 value 802.537169
#> iter   4 value 799.819079
#> iter   5 value 763.925311
#> iter   6 value 755.356496
#> iter   7 value 753.959953
#> iter   8 value 753.928901
#> iter   9 value 753.928847
#> iter   9 value 753.928837
#> iter   9 value 753.928832
#> final  value 753.928832 
#> converged
#> This is Run number  127 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1          e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.4704153  1.705396125  -0.07958474 -10.8946039      1
#> 2     1  -0.95  -2.35  0.2806316  0.007796026  -0.66936843  -2.3422040      1
#> 3     1  -6.20  -2.30  0.6016990  1.967345465  -5.59830097  -0.3326545      2
#> 4     1 -13.90  -2.55  0.6087371  0.352152908 -13.29126289  -2.1978471      2
#> 5     1 -14.40  -5.80  1.9502347  0.965958981 -12.44976534  -4.8340410      2
#> 6     1  -3.60  -1.70 -0.9923503 -0.619029628  -4.59235026  -2.3190296      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -39575   7700 
#> initial  value 998.131940 
#> iter   2 value 796.921234
#> iter   3 value 781.307460
#> iter   4 value 779.870670
#> iter   5 value 746.228503
#> iter   6 value 737.641984
#> iter   7 value 736.469027
#> iter   8 value 736.447753
#> iter   8 value 736.447749
#> final  value 736.447749 
#> converged
#> This is Run number  128 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 1.6155602  0.30384009   1.0655602 -12.2961599      1
#> 2     1  -0.95  -2.35 0.7574315 -0.61876202  -0.1925685  -2.9687620      1
#> 3     1  -6.20  -2.30 1.9302551  2.70334303  -4.2697449   0.4033430      2
#> 4     1 -13.90  -2.55 0.5040528  0.10378346 -13.3959472  -2.4462165      2
#> 5     1 -14.40  -5.80 0.6823083  0.04999199 -13.7176917  -5.7500080      2
#> 6     1  -3.60  -1.70 0.2407718  1.10703430  -3.3592282  -0.5929657      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -37950   5925 
#> initial  value 998.131940 
#> iter   2 value 830.175463
#> iter   3 value 821.900026
#> iter   4 value 820.671042
#> iter   5 value 781.912269
#> iter   6 value 773.571604
#> iter   7 value 771.931159
#> iter   8 value 771.892446
#> iter   9 value 771.892347
#> iter  10 value 771.892335
#> iter  10 value 771.892331
#> iter  10 value 771.892327
#> final  value 771.892327 
#> converged
#> This is Run number  129 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.013257058  0.6146410  -0.5367429 -11.9853590      1
#> 2     1  -0.95  -2.35 -0.007590402 -0.2269947  -0.9575904  -2.5769947      1
#> 3     1  -6.20  -2.30 -0.129764150 -0.4604442  -6.3297641  -2.7604442      2
#> 4     1 -13.90  -2.55 -0.826629694  0.6566235 -14.7266297  -1.8933765      2
#> 5     1 -14.40  -5.80  0.925438344 -0.3550511 -13.4745617  -6.1550511      2
#> 6     1  -3.60  -1.70  0.523862051  1.2371312  -3.0761379  -0.4628688      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6600 -38925   6375 
#> initial  value 998.131940 
#> iter   2 value 813.935764
#> iter   3 value 803.434884
#> iter   4 value 801.941989
#> iter   5 value 766.082142
#> iter   6 value 757.489358
#> iter   7 value 755.997046
#> iter   8 value 755.961420
#> iter   9 value 755.961344
#> iter  10 value 755.961332
#> iter  10 value 755.961325
#> iter  10 value 755.961325
#> final  value 755.961325 
#> converged
#> This is Run number  130 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.28706691  0.08503725  -0.8370669 -12.5149627      1
#> 2     1  -0.95  -2.35  0.72972559  1.68337268  -0.2202744  -0.6666273      1
#> 3     1  -6.20  -2.30  1.29963033 -0.42474723  -4.9003697  -2.7247472      2
#> 4     1 -13.90  -2.55  1.16782494  4.82519673 -12.7321751   2.2751967      2
#> 5     1 -14.40  -5.80 -0.03524421 -0.37960836 -14.4352442  -6.1796084      2
#> 6     1  -3.60  -1.70 -0.63969585 -0.34121831  -4.2396959  -2.0412183      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -38225   6475 
#> initial  value 998.131940 
#> iter   2 value 823.840237
#> iter   3 value 813.092715
#> iter   4 value 811.346496
#> iter   5 value 773.561946
#> iter   6 value 765.116619
#> iter   7 value 763.642130
#> iter   8 value 763.609118
#> iter   9 value 763.609052
#> iter   9 value 763.609052
#> iter   9 value 763.609052
#> final  value 763.609052 
#> converged
#> This is Run number  131 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1          e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.3165315  1.524189532  -0.8665315 -11.075810      1
#> 2     1  -0.95  -2.35  1.3164826  0.652308434   0.3664826  -1.697692      1
#> 3     1  -6.20  -2.30 -1.4117486 -0.016456106  -7.6117486  -2.316456      2
#> 4     1 -13.90  -2.55 -0.2352694 -0.080260767 -14.1352694  -2.630261      2
#> 5     1 -14.40  -5.80  0.6037892  0.500541109 -13.7962108  -5.299459      2
#> 6     1  -3.60  -1.70  0.4378517 -0.009254014  -3.1621483  -1.709254      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5580 -39075   8575 
#> initial  value 998.131940 
#> iter   2 value 799.060048
#> iter   3 value 778.598971
#> iter   4 value 775.824969
#> iter   5 value 741.258481
#> iter   6 value 732.942168
#> iter   7 value 731.848667
#> iter   8 value 731.833511
#> iter   9 value 731.833497
#> iter   9 value 731.833494
#> iter   9 value 731.833494
#> final  value 731.833494 
#> converged
#> This is Run number  132 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5196768  0.5890659  -1.0696768 -12.01093412      1
#> 2     1  -0.95  -2.35  0.8236607 -0.2641049  -0.1263393  -2.61410492      1
#> 3     1  -6.20  -2.30  4.4109768 -0.1255354  -1.7890232  -2.42553541      1
#> 4     1 -13.90  -2.55 -0.7794212  0.3924532 -14.6794212  -2.15754678      2
#> 5     1 -14.40  -5.80  1.3540949  0.4193582 -13.0459051  -5.38064184      2
#> 6     1  -3.60  -1.70  1.4265360  1.6007162  -2.1734640  -0.09928384      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5720 -36525   7175 
#> initial  value 998.131940 
#> iter   2 value 843.439420
#> iter   3 value 832.706472
#> iter   4 value 831.328997
#> iter   5 value 788.744654
#> iter   6 value 780.755104
#> iter   7 value 779.414690
#> iter   8 value 779.390285
#> iter   9 value 779.390248
#> iter  10 value 779.390236
#> iter  10 value 779.390225
#> iter  10 value 779.390220
#> final  value 779.390220 
#> converged
#> This is Run number  133 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6985852 -0.3486969  -1.2485852 -12.9486969      1
#> 2     1  -0.95  -2.35  0.3226493 -0.5028395  -0.6273507  -2.8528395      1
#> 3     1  -6.20  -2.30  3.4734443  0.4955129  -2.7265557  -1.8044871      2
#> 4     1 -13.90  -2.55  0.2666107  0.7923951 -13.6333893  -1.7576049      2
#> 5     1 -14.40  -5.80  1.4734701  4.4063127 -12.9265299  -1.3936873      2
#> 6     1  -3.60  -1.70 -0.1324955  1.1545845  -3.7324955  -0.5454155      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5340 -36175   7200 
#> initial  value 998.131940 
#> iter   2 value 847.822259
#> iter   3 value 836.129674
#> iter   4 value 834.008898
#> iter   5 value 790.676626
#> iter   6 value 782.794608
#> iter   7 value 781.486977
#> iter   8 value 781.464486
#> iter   9 value 781.464457
#> iter   9 value 781.464447
#> iter   9 value 781.464442
#> final  value 781.464442 
#> converged
#> This is Run number  134 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.87286352 -0.6392067   0.3228635 -13.239207      1
#> 2     1  -0.95  -2.35  1.75347823 -0.2807660   0.8034782  -2.630766      1
#> 3     1  -6.20  -2.30  0.52224873  1.0334426  -5.6777513  -1.266557      2
#> 4     1 -13.90  -2.55 -0.78541897 -1.0078416 -14.6854190  -3.557842      2
#> 5     1 -14.40  -5.80 -0.54515703  1.2838356 -14.9451570  -4.516164      2
#> 6     1  -3.60  -1.70  0.02167894 -1.7751504  -3.5783211  -3.475150      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5840 -36525   7650 
#> initial  value 998.131940 
#> iter   2 value 840.601584
#> iter   3 value 829.543291
#> iter   4 value 828.768332
#> iter   5 value 785.997373
#> iter   6 value 777.977331
#> iter   7 value 776.688733
#> iter   8 value 776.666672
#> iter   9 value 776.666641
#> iter   9 value 776.666629
#> iter   9 value 776.666624
#> final  value 776.666624 
#> converged
#> This is Run number  135 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8856850 -0.41886283   0.335685 -13.0188628      1
#> 2     1  -0.95  -2.35 -0.7252232  0.51405599  -1.675223  -1.8359440      1
#> 3     1  -6.20  -2.30  0.3163594  0.41299380  -5.883641  -1.8870062      2
#> 4     1 -13.90  -2.55  1.9515774 -0.08487522 -11.948423  -2.6348752      2
#> 5     1 -14.40  -5.80  1.2379621 -0.57006197 -13.162038  -6.3700620      2
#> 6     1  -3.60  -1.70  0.3179838  2.16273940  -3.282016   0.4627394      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5980 -37075   6825 
#> initial  value 998.131940 
#> iter   2 value 838.047265
#> iter   3 value 827.742923
#> iter   4 value 826.366996
#> iter   5 value 785.280305
#> iter   6 value 777.135385
#> iter   7 value 775.723808
#> iter   8 value 775.695699
#> iter   9 value 775.695649
#> iter   9 value 775.695649
#> iter   9 value 775.695649
#> final  value 775.695649 
#> converged
#> This is Run number  136 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.23167818  2.42646006   1.681678 -10.1735399      1
#> 2     1  -0.95  -2.35  2.01476686  0.47271232   1.064767  -1.8772877      1
#> 3     1  -6.20  -2.30 -0.20470875  0.05081534  -6.404709  -2.2491847      2
#> 4     1 -13.90  -2.55  2.29210249 -0.08752552 -11.607898  -2.6375255      2
#> 5     1 -14.40  -5.80  0.64678624 -0.08449036 -13.753214  -5.8844904      2
#> 6     1  -3.60  -1.70 -0.09931459  1.05061407  -3.699315  -0.6493859      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5900 -38825   8150 
#> initial  value 998.131940 
#> iter   2 value 805.572942
#> iter   3 value 788.489731
#> iter   4 value 786.670826
#> iter   5 value 750.959618
#> iter   6 value 742.528961
#> iter   7 value 741.373855
#> iter   8 value 741.355702
#> iter   9 value 741.355687
#> iter   9 value 741.355684
#> iter   9 value 741.355675
#> final  value 741.355675 
#> converged
#> This is Run number  137 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8511228 -0.02889434   0.30112281 -12.628894      1
#> 2     1  -0.95  -2.35  0.9178843 -0.43448110  -0.03211565  -2.784481      1
#> 3     1  -6.20  -2.30 -0.7812737  0.33578475  -6.98127367  -1.964215      2
#> 4     1 -13.90  -2.55  1.1838083  0.12798655 -12.71619170  -2.422013      2
#> 5     1 -14.40  -5.80  1.4619885  1.73312689 -12.93801148  -4.066873      2
#> 6     1  -3.60  -1.70 -0.5712750  2.11494896  -4.17127502   0.414949      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -38925   7200 
#> initial  value 998.131940 
#> iter   2 value 809.612017
#> iter   3 value 796.934252
#> iter   4 value 795.808298
#> iter   5 value 759.981885
#> iter   6 value 751.403569
#> iter   7 value 750.085991
#> iter   8 value 750.058522
#> iter   9 value 750.058480
#> iter  10 value 750.058468
#> iter  10 value 750.058458
#> iter  10 value 750.058452
#> final  value 750.058452 
#> converged
#> This is Run number  138 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8205621  0.3040667   0.2705621 -12.2959333      1
#> 2     1  -0.95  -2.35  0.6763085  2.0613613  -0.2736915  -0.2886387      1
#> 3     1  -6.20  -2.30  1.1298120 -0.1978730  -5.0701880  -2.4978730      2
#> 4     1 -13.90  -2.55 -0.9525673  0.1635724 -14.8525673  -2.3864276      2
#> 5     1 -14.40  -5.80 -0.1402400  0.8233854 -14.5402400  -4.9766146      2
#> 6     1  -3.60  -1.70 -0.6453974  0.0574075  -4.2453974  -1.6425925      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7020 -39900   7525 
#> initial  value 998.131940 
#> iter   2 value 792.314353
#> iter   3 value 778.832828
#> iter   4 value 778.545369
#> iter   5 value 745.526780
#> iter   6 value 736.825756
#> iter   7 value 735.615245
#> iter   8 value 735.591317
#> iter   9 value 735.591286
#> iter   9 value 735.591278
#> iter   9 value 735.591276
#> final  value 735.591276 
#> converged
#> This is Run number  139 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.58365874 -0.09696646   0.03365874 -12.6969665      1
#> 2     1  -0.95  -2.35 -0.97517770  0.86955234  -1.92517770  -1.4804477      2
#> 3     1  -6.20  -2.30 -1.63648937  1.65310178  -7.83648937  -0.6468982      2
#> 4     1 -13.90  -2.55 -0.02224711 -0.20563262 -13.92224711  -2.7556326      2
#> 5     1 -14.40  -5.80  4.36404999  1.41800687 -10.03595001  -4.3819931      2
#> 6     1  -3.60  -1.70  2.28158734 -1.17624436  -1.31841266  -2.8762444      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5880 -38400   8225 
#> initial  value 998.131940 
#> iter   2 value 811.283694
#> iter   3 value 794.969622
#> iter   4 value 793.501579
#> iter   5 value 756.400747
#> iter   6 value 748.013795
#> iter   7 value 746.843840
#> iter   8 value 746.825819
#> iter   9 value 746.825806
#> iter   9 value 746.825803
#> iter   9 value 746.825792
#> final  value 746.825792 
#> converged
#> This is Run number  140 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1195485 -0.99575207  -0.4304515 -13.595752      1
#> 2     1  -0.95  -2.35 -1.0843589 -0.52583176  -2.0343589  -2.875832      1
#> 3     1  -6.20  -2.30  1.9381947 -0.71982923  -4.2618053  -3.019829      2
#> 4     1 -13.90  -2.55  0.1439180  0.52312576 -13.7560820  -2.026874      2
#> 5     1 -14.40  -5.80 -0.2379121 -0.05483515 -14.6379121  -5.854835      2
#> 6     1  -3.60  -1.70 -0.5339392 -0.27023570  -4.1339392  -1.970236      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -35975   6100 
#> initial  value 998.131940 
#> iter   2 value 855.726129
#> iter   3 value 849.449133
#> iter   4 value 848.985625
#> iter   5 value 804.812668
#> iter   6 value 797.105243
#> iter   7 value 795.568336
#> iter   8 value 795.538065
#> iter   9 value 795.537995
#> iter   9 value 795.537989
#> iter   9 value 795.537989
#> final  value 795.537989 
#> converged
#> This is Run number  141 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5204681 -0.8373088  -0.02953187 -13.437309      1
#> 2     1  -0.95  -2.35  0.8694662  0.3745249  -0.08053376  -1.975475      1
#> 3     1  -6.20  -2.30  2.4218607 -0.4524521  -3.77813930  -2.752452      2
#> 4     1 -13.90  -2.55  0.1557874  1.0736752 -13.74421264  -1.476325      2
#> 5     1 -14.40  -5.80 -1.2387726  0.7329548 -15.63877263  -5.067045      2
#> 6     1  -3.60  -1.70  2.2043552 -0.4960609  -1.39564481  -2.196061      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -38050   6325 
#> initial  value 998.131940 
#> iter   2 value 827.024049
#> iter   3 value 817.163741
#> iter   4 value 815.642434
#> iter   5 value 777.278519
#> iter   6 value 768.882294
#> iter   7 value 767.360503
#> iter   8 value 767.326015
#> iter   9 value 767.325941
#> iter  10 value 767.325929
#> iter  10 value 767.325922
#> iter  10 value 767.325917
#> final  value 767.325917 
#> converged
#> This is Run number  142 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.9356484  1.3688998   0.3856484 -11.2311002      1
#> 2     1  -0.95  -2.35  2.0059175  2.6400638   1.0559175   0.2900638      1
#> 3     1  -6.20  -2.30  0.2949954 -0.4800333  -5.9050046  -2.7800333      2
#> 4     1 -13.90  -2.55 -1.2173447  2.3460072 -15.1173447  -0.2039928      2
#> 5     1 -14.40  -5.80 -0.4629034  1.3966766 -14.8629034  -4.4033234      2
#> 6     1  -3.60  -1.70  0.1672113  0.6482633  -3.4327887  -1.0517367      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6340 -38125   6775 
#> initial  value 998.131940 
#> iter   2 value 823.649927
#> iter   3 value 812.860074
#> iter   4 value 811.623783
#> iter   5 value 773.423588
#> iter   6 value 764.999157
#> iter   7 value 763.567407
#> iter   8 value 763.536394
#> iter   9 value 763.536335
#> iter  10 value 763.536322
#> iter  10 value 763.536312
#> iter  10 value 763.536308
#> final  value 763.536308 
#> converged
#> This is Run number  143 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.01623733  4.4900386  -0.5662373 -8.1099614      1
#> 2     1  -0.95  -2.35  0.14646683 -0.1479136  -0.8035332 -2.4979136      1
#> 3     1  -6.20  -2.30  0.55993888  0.2951670  -5.6400611 -2.0048330      2
#> 4     1 -13.90  -2.55  1.57540644  1.7172438 -12.3245936 -0.8327562      2
#> 5     1 -14.40  -5.80  0.61582758  4.2606734 -13.7841724 -1.5393266      2
#> 6     1  -3.60  -1.70  0.06077692  2.0014828  -3.5392231  0.3014828      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6080 -38850   8000 
#> initial  value 998.131940 
#> iter   2 value 806.102722
#> iter   3 value 790.137963
#> iter   4 value 788.714221
#> iter   5 value 752.930872
#> iter   6 value 744.455297
#> iter   7 value 743.278152
#> iter   8 value 743.258637
#> iter   9 value 743.258617
#> iter   9 value 743.258613
#> iter   9 value 743.258606
#> final  value 743.258606 
#> converged
#> This is Run number  144 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.02540204  0.08516046  -0.5754020 -12.5148395      1
#> 2     1  -0.95  -2.35  0.12932325 -0.08493782  -0.8206767  -2.4349378      1
#> 3     1  -6.20  -2.30  0.94974298 -0.92341321  -5.2502570  -3.2234132      2
#> 4     1 -13.90  -2.55  5.45093184  0.97000046  -8.4490682  -1.5799995      2
#> 5     1 -14.40  -5.80  0.68751333 -0.09983055 -13.7124867  -5.8998306      2
#> 6     1  -3.60  -1.70  1.06535369  0.74274411  -2.5346463  -0.9572559      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -39550   7625 
#> initial  value 998.131940 
#> iter   2 value 797.674010
#> iter   3 value 782.801550
#> iter   4 value 781.654072
#> iter   5 value 747.826941
#> iter   6 value 739.216033
#> iter   7 value 738.022354
#> iter   8 value 738.000025
#> iter   9 value 738.000002
#> iter   9 value 737.999994
#> iter   9 value 737.999991
#> final  value 737.999991 
#> converged
#> This is Run number  145 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1425866  1.0008970  -0.4074134 -11.5991030      1
#> 2     1  -0.95  -2.35 -1.1802779  1.6102184  -2.1302779  -0.7397816      2
#> 3     1  -6.20  -2.30  0.7753154 -0.2292162  -5.4246846  -2.5292162      2
#> 4     1 -13.90  -2.55 -1.2358724  0.9545549 -15.1358724  -1.5954451      2
#> 5     1 -14.40  -5.80 -0.9534038  2.0717363 -15.3534038  -3.7282637      2
#> 6     1  -3.60  -1.70  1.8562992 -0.3633814  -1.7437008  -2.0633814      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5900 -39275   6850 
#> initial  value 998.131940 
#> iter   2 value 806.619959
#> iter   3 value 790.947770
#> iter   4 value 787.259675
#> iter   5 value 753.144637
#> iter   6 value 744.515946
#> iter   7 value 743.238137
#> iter   8 value 743.211328
#> iter   9 value 743.211293
#> iter   9 value 743.211286
#> iter   9 value 743.211281
#> final  value 743.211281 
#> converged
#> This is Run number  146 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2867370 -0.9313730  -0.83673697 -13.531373      1
#> 2     1  -0.95  -2.35  0.8640782  0.5480416  -0.08592184  -1.801958      1
#> 3     1  -6.20  -2.30 -1.4136972  0.6295673  -7.61369720  -1.670433      2
#> 4     1 -13.90  -2.55  1.1147061  0.4361971 -12.78529389  -2.113803      2
#> 5     1 -14.40  -5.80  2.4387189  0.3467111 -11.96128112  -5.453289      2
#> 6     1  -3.60  -1.70  0.6153004 -0.8356694  -2.98469961  -2.535669      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38000   6950 
#> initial  value 998.131940 
#> iter   2 value 824.432157
#> iter   3 value 813.690608
#> iter   4 value 812.771878
#> iter   5 value 774.140127
#> iter   6 value 765.740075
#> iter   7 value 764.328791
#> iter   8 value 764.298907
#> iter   9 value 764.298852
#> iter  10 value 764.298837
#> iter  10 value 764.298827
#> iter  10 value 764.298824
#> final  value 764.298824 
#> converged
#> This is Run number  147 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.24351930  2.14403611  -1.793519 -10.4559639      1
#> 2     1  -0.95  -2.35  2.90579605 -0.09093662   1.955796  -2.4409366      1
#> 3     1  -6.20  -2.30  0.69668368  0.41219840  -5.503316  -1.8878016      2
#> 4     1 -13.90  -2.55  0.05818041  0.10300689 -13.841820  -2.4469931      2
#> 5     1 -14.40  -5.80 -1.29087069 -0.81303065 -15.690871  -6.6130307      2
#> 6     1  -3.60  -1.70  1.35727580  1.41340633  -2.242724  -0.2865937      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -39350   7225 
#> initial  value 998.131940 
#> iter   2 value 803.207714
#> iter   3 value 789.025029
#> iter   4 value 787.183568
#> iter   5 value 752.857580
#> iter   6 value 744.242693
#> iter   7 value 742.980120
#> iter   8 value 742.954307
#> iter   9 value 742.954274
#> iter   9 value 742.954264
#> iter   9 value 742.954258
#> final  value 742.954258 
#> converged
#> This is Run number  148 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.19733318  0.51077804   0.6473332 -12.0892220      1
#> 2     1  -0.95  -2.35 -0.52125916  2.13107625  -1.4712592  -0.2189238      2
#> 3     1  -6.20  -2.30 -0.18981702 -0.03074734  -6.3898170  -2.3307473      2
#> 4     1 -13.90  -2.55  1.64015825  3.01803842 -12.2598417   0.4680384      2
#> 5     1 -14.40  -5.80  0.03052362 -0.57099509 -14.3694764  -6.3709951      2
#> 6     1  -3.60  -1.70  1.33886210 -0.39531734  -2.2611379  -2.0953173      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5620 -37600   8125 
#> initial  value 998.131940 
#> iter   2 value 823.285079
#> iter   3 value 808.031135
#> iter   4 value 806.333951
#> iter   5 value 766.884280
#> iter   6 value 758.633079
#> iter   7 value 757.422678
#> iter   8 value 757.403788
#> iter   9 value 757.403772
#> iter   9 value 757.403772
#> iter   9 value 757.403766
#> final  value 757.403766 
#> converged
#> This is Run number  149 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1       e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.43609393 0.7013268  -0.1139061 -11.8986732      1
#> 2     1  -0.95  -2.35 -1.11922853 3.1194979  -2.0692285   0.7694979      2
#> 3     1  -6.20  -2.30  0.06393889 1.0611855  -6.1360611  -1.2388145      2
#> 4     1 -13.90  -2.55  0.79532654 3.7323890 -13.1046735   1.1823890      2
#> 5     1 -14.40  -5.80 -1.15528773 0.2589116 -15.5552877  -5.5410884      2
#> 6     1  -3.60  -1.70  2.16473543 1.4874184  -1.4352646  -0.2125816      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5320 -35950   6950 
#> initial  value 998.131940 
#> iter   2 value 852.058458
#> iter   3 value 841.022494
#> iter   4 value 838.842118
#> iter   5 value 794.959638
#> iter   6 value 787.156416
#> iter   7 value 785.830916
#> iter   8 value 785.807907
#> iter   9 value 785.807875
#> iter   9 value 785.807866
#> iter   9 value 785.807862
#> final  value 785.807862 
#> converged
#> This is Run number  150 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1925067  2.04015897  -0.7425067 -10.5598410      1
#> 2     1  -0.95  -2.35  0.1776420  0.05961709  -0.7723580  -2.2903829      1
#> 3     1  -6.20  -2.30  1.7347755 -0.47444233  -4.4652245  -2.7744423      2
#> 4     1 -13.90  -2.55 -0.3297786  1.79303070 -14.2297786  -0.7569693      2
#> 5     1 -14.40  -5.80  0.7295488  0.46424627 -13.6704512  -5.3357537      2
#> 6     1  -3.60  -1.70 -0.3886173  0.29899326  -3.9886173  -1.4010067      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6440 -38450   6275 
#> initial  value 998.131940 
#> iter   2 value 821.505696
#> iter   3 value 811.331868
#> iter   4 value 809.670627
#> iter   5 value 772.483885
#> iter   6 value 763.991729
#> iter   7 value 762.467864
#> iter   8 value 762.432221
#> iter   9 value 762.432143
#> iter  10 value 762.432131
#> iter  10 value 762.432125
#> iter  10 value 762.432123
#> final  value 762.432123 
#> converged
#> This is Run number  151 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5600606  1.33529786  -1.1100606 -11.264702      1
#> 2     1  -0.95  -2.35  2.4614802  0.16456444   1.5114802  -2.185436      1
#> 3     1  -6.20  -2.30 -0.6452466 -1.11798262  -6.8452466  -3.417983      2
#> 4     1 -13.90  -2.55 -0.2636248 -0.79869186 -14.1636248  -3.348692      2
#> 5     1 -14.40  -5.80 -0.2024300  2.80931145 -14.6024300  -2.990689      2
#> 6     1  -3.60  -1.70  2.7816691 -0.07894998  -0.8183309  -1.778950      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -38025   6725 
#> initial  value 998.131940 
#> iter   2 value 825.384958
#> iter   3 value 814.547207
#> iter   4 value 813.129980
#> iter   5 value 774.696324
#> iter   6 value 766.297102
#> iter   7 value 764.861318
#> iter   8 value 764.830368
#> iter   9 value 764.830311
#> iter   9 value 764.830311
#> iter   9 value 764.830311
#> final  value 764.830311 
#> converged
#> This is Run number  152 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6250066  0.2262293  -1.175007 -12.3737707      1
#> 2     1  -0.95  -2.35  3.3231726 -0.6459198   2.373173  -2.9959198      1
#> 3     1  -6.20  -2.30 -0.5017023  1.5260813  -6.701702  -0.7739187      2
#> 4     1 -13.90  -2.55  0.5679645  0.1826057 -13.332035  -2.3673943      2
#> 5     1 -14.40  -5.80  0.9951574 -0.4104710 -13.404843  -6.2104710      2
#> 6     1  -3.60  -1.70  1.8083609 -1.3865536  -1.791639  -3.0865536      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   4860 -35025   6700 
#> initial  value 998.131940 
#> iter   2 value 864.561788
#> iter   3 value 853.366007
#> iter   4 value 850.618570
#> iter   5 value 804.486120
#> iter   6 value 796.982491
#> iter   7 value 795.705861
#> iter   8 value 795.685667
#> iter   9 value 795.685642
#> iter   9 value 795.685636
#> iter   9 value 795.685633
#> final  value 795.685633 
#> converged
#> This is Run number  153 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2870767 -0.02050144  -0.8370767 -12.620501      1
#> 2     1  -0.95  -2.35  0.1221351  1.23251082  -0.8278649  -1.117489      1
#> 3     1  -6.20  -2.30  1.0288343  0.70349491  -5.1711657  -1.596505      2
#> 4     1 -13.90  -2.55 -0.7415543  0.29205276 -14.6415543  -2.257947      2
#> 5     1 -14.40  -5.80 -0.5924580 -0.16841918 -14.9924580  -5.968419      2
#> 6     1  -3.60  -1.70 -1.3418374 -0.60850812  -4.9418374  -2.308508      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5380 -36925   7325 
#> initial  value 998.131940 
#> iter   2 value 837.353294
#> iter   3 value 823.886922
#> iter   4 value 821.325484
#> iter   5 value 780.150321
#> iter   6 value 772.039706
#> iter   7 value 770.738327
#> iter   8 value 770.715401
#> iter   9 value 770.715374
#> iter   9 value 770.715364
#> iter   9 value 770.715359
#> final  value 770.715359 
#> converged
#> This is Run number  154 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.53920613  0.4633758   0.9892061 -12.1366242      1
#> 2     1  -0.95  -2.35  1.71380230 -0.4433767   0.7638023  -2.7933767      1
#> 3     1  -6.20  -2.30  0.03696869  1.8820436  -6.1630313  -0.4179564      2
#> 4     1 -13.90  -2.55  0.19547196  6.2942176 -13.7045280   3.7442176      2
#> 5     1 -14.40  -5.80 -0.88588605 -0.7344021 -15.2858860  -6.5344021      2
#> 6     1  -3.60  -1.70  0.65747306 -0.3554803  -2.9425269  -2.0554803      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6880 -37700   5775 
#> initial  value 998.131940 
#> iter   2 value 834.023460
#> iter   3 value 827.284290
#> iter   4 value 826.728475
#> iter   5 value 787.034662
#> iter   6 value 778.799035
#> iter   7 value 777.075526
#> iter   8 value 777.034725
#> iter   9 value 777.034609
#> iter  10 value 777.034597
#> iter  10 value 777.034592
#> iter  10 value 777.034587
#> final  value 777.034587 
#> converged
#> This is Run number  155 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.9846353  2.0813401  -1.5346353 -10.518660      1
#> 2     1  -0.95  -2.35  0.3228183 -1.2500166  -0.6271817  -3.600017      1
#> 3     1  -6.20  -2.30  1.3564790 -0.5968467  -4.8435210  -2.896847      2
#> 4     1 -13.90  -2.55  0.3135420 -0.1155842 -13.5864580  -2.665584      2
#> 5     1 -14.40  -5.80  1.5523309  0.1802541 -12.8476691  -5.619746      2
#> 6     1  -3.60  -1.70  1.4359782 -1.2105459  -2.1640218  -2.910546      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6760 -39075   7000 
#> initial  value 998.131940 
#> iter   2 value 808.235077
#> iter   3 value 796.796033
#> iter   4 value 796.120122
#> iter   5 value 760.557113
#> iter   6 value 751.932193
#> iter   7 value 750.559096
#> iter   8 value 750.528560
#> iter   9 value 750.528505
#> iter  10 value 750.528490
#> iter  10 value 750.528480
#> iter  10 value 750.528473
#> final  value 750.528473 
#> converged
#> This is Run number  156 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.3284442 -0.8323573   0.7784442 -13.432357      1
#> 2     1  -0.95  -2.35 -0.2553660 -0.1226016  -1.2053660  -2.472602      1
#> 3     1  -6.20  -2.30  0.9513305  2.0407260  -5.2486695  -0.259274      2
#> 4     1 -13.90  -2.55  1.8509883  1.2119672 -12.0490117  -1.338033      2
#> 5     1 -14.40  -5.80  0.2170416  0.6717132 -14.1829584  -5.128287      2
#> 6     1  -3.60  -1.70 -0.5796611  0.1742366  -4.1796611  -1.525763      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6520 -38875   7475 
#> initial  value 998.131940 
#> iter   2 value 808.688095
#> iter   3 value 795.657059
#> iter   4 value 794.915069
#> iter   5 value 758.892339
#> iter   6 value 750.324033
#> iter   7 value 749.044868
#> iter   8 value 749.019613
#> iter   9 value 749.019578
#> iter  10 value 749.019566
#> iter  10 value 749.019557
#> iter  10 value 749.019549
#> final  value 749.019549 
#> converged
#> This is Run number  157 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1196599  0.3701395  -0.4303401 -12.22986050      1
#> 2     1  -0.95  -2.35  1.8375022  2.0634689   0.8875022  -0.28653107      1
#> 3     1  -6.20  -2.30 -0.2368146  0.5991558  -6.4368146  -1.70084418      2
#> 4     1 -13.90  -2.55 -0.7280566  1.1624193 -14.6280566  -1.38758066      2
#> 5     1 -14.40  -5.80  1.6802103 -0.1810604 -12.7197897  -5.98106041      2
#> 6     1  -3.60  -1.70 -0.1156988  1.7546507  -3.7156988   0.05465075      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7160 -40075   5850 
#> initial  value 998.131940 
#> iter   2 value 798.311202
#> iter   3 value 789.045381
#> iter   4 value 787.698957
#> iter   5 value 755.128609
#> iter   6 value 746.366016
#> iter   7 value 744.780987
#> iter   8 value 744.737392
#> iter   9 value 744.737272
#> iter  10 value 744.737259
#> iter  10 value 744.737259
#> iter  10 value 744.737252
#> final  value 744.737252 
#> converged
#> This is Run number  158 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.01687771 -0.1186750  -0.5668777 -12.718675      1
#> 2     1  -0.95  -2.35 -0.31483839  1.2810316  -1.2648384  -1.068968      2
#> 3     1  -6.20  -2.30  1.48161290  0.6009233  -4.7183871  -1.699077      2
#> 4     1 -13.90  -2.55 -0.34127499  0.5603407 -14.2412750  -1.989659      2
#> 5     1 -14.40  -5.80 -0.85863450 -1.4289316 -15.2586345  -7.228932      2
#> 6     1  -3.60  -1.70 -0.69124424  0.3564565  -4.2912442  -1.343544      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5580 -37725   6075 
#> initial  value 998.131940 
#> iter   2 value 833.062560
#> iter   3 value 819.839446
#> iter   4 value 816.162791
#> iter   5 value 777.306314
#> iter   6 value 768.889047
#> iter   7 value 767.425852
#> iter   8 value 767.394077
#> iter   9 value 767.394008
#> iter   9 value 767.393996
#> iter   9 value 767.393991
#> final  value 767.393991 
#> converged
#> This is Run number  159 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.6252827  1.56392814   1.0752827 -11.036072      1
#> 2     1  -0.95  -2.35  1.6101609 -0.70950821   0.6601609  -3.059508      1
#> 3     1  -6.20  -2.30  0.3404632  1.94502896  -5.8595368  -0.354971      2
#> 4     1 -13.90  -2.55  1.7445505 -0.45246603 -12.1554495  -3.002466      2
#> 5     1 -14.40  -5.80  2.3145823  3.10005494 -12.0854177  -2.699945      2
#> 6     1  -3.60  -1.70 -0.3846931 -0.07749941  -3.9846931  -1.777499      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -38825   7325 
#> initial  value 998.131940 
#> iter   2 value 810.565721
#> iter   3 value 796.559650
#> iter   4 value 794.769234
#> iter   5 value 758.876864
#> iter   6 value 750.342003
#> iter   7 value 749.063438
#> iter   8 value 749.038146
#> iter   9 value 749.038114
#> iter   9 value 749.038104
#> iter   9 value 749.038098
#> final  value 749.038098 
#> converged
#> This is Run number  160 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.1534838  0.1509388  -0.7034838 -12.449061      1
#> 2     1  -0.95  -2.35 -0.7931639 -1.1335804  -1.7431639  -3.483580      1
#> 3     1  -6.20  -2.30  0.1991533 -0.9363168  -6.0008467  -3.236317      2
#> 4     1 -13.90  -2.55  0.1736630  0.5310906 -13.7263370  -2.018909      2
#> 5     1 -14.40  -5.80  0.9010981  0.2076687 -13.4989019  -5.592331      2
#> 6     1  -3.60  -1.70  0.4056225 -0.4256635  -3.1943775  -2.125664      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6720 -40200   6725 
#> initial  value 998.131940 
#> iter   2 value 792.504082
#> iter   3 value 779.511942
#> iter   4 value 777.665254
#> iter   5 value 745.791488
#> iter   6 value 737.045892
#> iter   7 value 735.750623
#> iter   8 value 735.720557
#> iter   9 value 735.720510
#> iter   9 value 735.720509
#> iter   9 value 735.720509
#> final  value 735.720509 
#> converged
#> This is Run number  161 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  3.8941682 -0.09420352   3.3441682 -12.6942035      1
#> 2     1  -0.95  -2.35  0.4358084 -0.64355644  -0.5141916  -2.9935564      1
#> 3     1  -6.20  -2.30  0.8005120  1.02216237  -5.3994880  -1.2778376      2
#> 4     1 -13.90  -2.55  1.1187836  1.30594143 -12.7812164  -1.2440586      2
#> 5     1 -14.40  -5.80  1.9581834 -0.51155744 -12.4418166  -6.3115574      2
#> 6     1  -3.60  -1.70 -0.1522272  0.90016952  -3.7522272  -0.7998305      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6180 -39575   6800 
#> initial  value 998.131940 
#> iter   2 value 802.223079
#> iter   3 value 787.609132
#> iter   4 value 784.579141
#> iter   5 value 751.191393
#> iter   6 value 742.524072
#> iter   7 value 741.233800
#> iter   8 value 741.205637
#> iter   9 value 741.205597
#> iter   9 value 741.205590
#> iter   9 value 741.205585
#> final  value 741.205585 
#> converged
#> This is Run number  162 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 0.4024772  2.2065009  -0.1475228 -10.393499      1
#> 2     1  -0.95  -2.35 1.9501775 -0.6720595   1.0001775  -3.022059      1
#> 3     1  -6.20  -2.30 2.4944470  1.1268340  -3.7055530  -1.173166      2
#> 4     1 -13.90  -2.55 1.0818204 -0.3008397 -12.8181796  -2.850840      2
#> 5     1 -14.40  -5.80 0.3670193  0.7052709 -14.0329807  -5.094729      2
#> 6     1  -3.60  -1.70 0.7669320  0.5907449  -2.8330680  -1.109255      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -38400   6425 
#> initial  value 998.131940 
#> iter   2 value 821.459643
#> iter   3 value 811.235144
#> iter   4 value 809.808167
#> iter   5 value 772.414800
#> iter   6 value 763.932312
#> iter   7 value 762.433650
#> iter   8 value 762.399186
#> iter   9 value 762.399114
#> iter   9 value 762.399113
#> iter   9 value 762.399113
#> final  value 762.399113 
#> converged
#> This is Run number  163 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.8459106  0.2562057  -1.3959106 -12.34379426      1
#> 2     1  -0.95  -2.35  1.8055598 -0.2288344   0.8555598  -2.57883441      1
#> 3     1  -6.20  -2.30  1.8646730  2.2020751  -4.3353270  -0.09792495      2
#> 4     1 -13.90  -2.55  0.8799374 -0.5573151 -13.0200626  -3.10731515      2
#> 5     1 -14.40  -5.80  4.7217307  0.2221229  -9.6782693  -5.57787711      2
#> 6     1  -3.60  -1.70  0.4361255 -0.8619898  -3.1638745  -2.56198977      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -39225   7050 
#> initial  value 998.131940 
#> iter   2 value 805.972527
#> iter   3 value 793.127502
#> iter   4 value 791.702106
#> iter   5 value 756.829082
#> iter   6 value 748.203899
#> iter   7 value 746.884422
#> iter   8 value 746.856053
#> iter   9 value 746.856009
#> iter  10 value 746.855998
#> iter  10 value 746.855989
#> iter  10 value 746.855983
#> final  value 746.855983 
#> converged
#> This is Run number  164 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.35174017 -0.2326349   0.8017402 -12.8326349      1
#> 2     1  -0.95  -2.35  0.04486872  0.4759409  -0.9051313  -1.8740591      1
#> 3     1  -6.20  -2.30  0.76992536  0.3174228  -5.4300746  -1.9825772      2
#> 4     1 -13.90  -2.55 -0.60627405  1.6330446 -14.5062740  -0.9169554      2
#> 5     1 -14.40  -5.80 -1.34156099 -0.7300498 -15.7415610  -6.5300498      2
#> 6     1  -3.60  -1.70  4.19109845 -0.5847035   0.5910984  -2.2847035      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7340 -40925   6625 
#> initial  value 998.131940 
#> iter   2 value 780.605962
#> iter   3 value 769.056220
#> iter   4 value 768.294039
#> iter   5 value 738.250872
#> iter   6 value 729.435459
#> iter   7 value 728.148023
#> iter   8 value 728.116321
#> iter   9 value 728.116266
#> iter  10 value 728.116255
#> iter  10 value 728.116248
#> iter  10 value 728.116241
#> final  value 728.116241 
#> converged
#> This is Run number  165 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.4828286 -0.77702401   0.9328286 -13.377024      1
#> 2     1  -0.95  -2.35 -0.1076765  0.28578178  -1.0576765  -2.064218      1
#> 3     1  -6.20  -2.30  1.5515890 -1.37701768  -4.6484110  -3.677018      2
#> 4     1 -13.90  -2.55  0.7053390  0.04244316 -13.1946610  -2.507557      2
#> 5     1 -14.40  -5.80 -0.3282014  4.34726022 -14.7282014  -1.452740      2
#> 6     1  -3.60  -1.70  1.5438018 -0.65594209  -2.0561982  -2.355942      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6600 -39450   7250 
#> initial  value 998.131940 
#> iter   2 value 801.327289
#> iter   3 value 788.069927
#> iter   4 value 786.986615
#> iter   5 value 752.732022
#> iter   6 value 744.083323
#> iter   7 value 742.808823
#> iter   8 value 742.782266
#> iter   9 value 742.782229
#> iter  10 value 742.782218
#> iter  10 value 742.782208
#> iter  10 value 742.782202
#> final  value 742.782202 
#> converged
#> This is Run number  166 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  3.2470518 -1.5662488   2.6970518 -14.166249      1
#> 2     1  -0.95  -2.35  1.5102476  0.5018118   0.5602476  -1.848188      1
#> 3     1  -6.20  -2.30  0.7285373 -0.9111377  -5.4714627  -3.211138      2
#> 4     1 -13.90  -2.55  1.0032664  0.5799024 -12.8967336  -1.970098      2
#> 5     1 -14.40  -5.80 -1.0072278  2.3951188 -15.4072278  -3.404881      2
#> 6     1  -3.60  -1.70 -0.5007747 -0.1459498  -4.1007747  -1.845950      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6020 -37850   6450 
#> initial  value 998.131940 
#> iter   2 value 829.396853
#> iter   3 value 818.195621
#> iter   4 value 815.979070
#> iter   5 value 777.273101
#> iter   6 value 768.912330
#> iter   7 value 767.450212
#> iter   8 value 767.418620
#> iter   9 value 767.418560
#> iter   9 value 767.418550
#> iter   9 value 767.418544
#> final  value 767.418544 
#> converged
#> This is Run number  167 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  6.210010956  0.9690609   5.6600110 -11.6309391      1
#> 2     1  -0.95  -2.35  0.128578778  1.5716314  -0.8214212  -0.7783686      2
#> 3     1  -6.20  -2.30  4.427367559 -0.7495352  -1.7726324  -3.0495352      1
#> 4     1 -13.90  -2.55 -0.432867145  0.8710364 -14.3328671  -1.6789636      2
#> 5     1 -14.40  -5.80  0.002340605  0.9181577 -14.3976594  -4.8818423      2
#> 6     1  -3.60  -1.70 -0.442111183 -0.2147327  -4.0421112  -1.9147327      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -38350   7200 
#> initial  value 998.131940 
#> iter   2 value 818.137327
#> iter   3 value 805.799048
#> iter   4 value 804.553795
#> iter   5 value 767.069334
#> iter   6 value 758.599634
#> iter   7 value 757.260562
#> iter   8 value 757.233309
#> iter   9 value 757.233267
#> iter  10 value 757.233254
#> iter  10 value 757.233244
#> iter  10 value 757.233238
#> final  value 757.233238 
#> converged
#> This is Run number  168 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.16828034 -0.19179388  -0.7182803 -12.791794      1
#> 2     1  -0.95  -2.35 -0.01768426 -0.95595519  -0.9676843  -3.305955      1
#> 3     1  -6.20  -2.30  1.07361811  0.12428209  -5.1263819  -2.175718      2
#> 4     1 -13.90  -2.55 -1.48609969  0.04991446 -15.3860997  -2.500086      2
#> 5     1 -14.40  -5.80  0.56137385  3.00713266 -13.8386262  -2.792867      2
#> 6     1  -3.60  -1.70  0.51907780 -0.28979636  -3.0809222  -1.989796      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5800 -36425   6625 
#> initial  value 998.131940 
#> iter   2 value 847.707465
#> iter   3 value 838.185997
#> iter   4 value 836.660612
#> iter   5 value 793.887708
#> iter   6 value 785.953742
#> iter   7 value 784.537768
#> iter   8 value 784.510629
#> iter   9 value 784.510581
#> iter   9 value 784.510578
#> iter   9 value 784.510578
#> final  value 784.510578 
#> converged
#> This is Run number  169 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  4.4480199 -0.75530324   3.8980199 -13.3553032      1
#> 2     1  -0.95  -2.35  0.8271159  1.36319291  -0.1228841  -0.9868071      1
#> 3     1  -6.20  -2.30  2.9929490  5.74847339  -3.2070510   3.4484734      2
#> 4     1 -13.90  -2.55 -1.2897084  2.81034097 -15.1897084   0.2603410      2
#> 5     1 -14.40  -5.80  0.6008244  0.72731480 -13.7991756  -5.0726852      2
#> 6     1  -3.60  -1.70  0.5481241 -0.06931992  -3.0518759  -1.7693199      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7360 -39400   6650 
#> initial  value 998.131940 
#> iter   2 value 804.455522
#> iter   3 value 794.918487
#> iter   4 value 794.819545
#> iter   5 value 759.968614
#> iter   6 value 751.295296
#> iter   7 value 749.801974
#> iter   8 value 749.764962
#> iter   9 value 749.764873
#> iter  10 value 749.764854
#> iter  10 value 749.764846
#> iter  10 value 749.764837
#> final  value 749.764837 
#> converged
#> This is Run number  170 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.18507888  0.16385218  -0.3649211 -12.436148      1
#> 2     1  -0.95  -2.35  0.39011929  0.91902517  -0.5598807  -1.430975      1
#> 3     1  -6.20  -2.30  0.21859640 -0.55904567  -5.9814036  -2.859046      2
#> 4     1 -13.90  -2.55 -1.12228819 -0.38246311 -15.0222882  -2.932463      2
#> 5     1 -14.40  -5.80  0.07611045  1.03420648 -14.3238895  -4.765794      2
#> 6     1  -3.60  -1.70  0.29273584  0.03752286  -3.3072642  -1.662477      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6420 -38725   6925 
#> initial  value 998.131940 
#> iter   2 value 814.132713
#> iter   3 value 802.258990
#> iter   4 value 800.931184
#> iter   5 value 764.520624
#> iter   6 value 755.970302
#> iter   7 value 754.592956
#> iter   8 value 754.563019
#> iter   9 value 754.562967
#> iter  10 value 754.562955
#> iter  10 value 754.562945
#> iter  10 value 754.562945
#> final  value 754.562945 
#> converged
#> This is Run number  171 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.38130658  1.0115170  -0.1686934 -11.588483      1
#> 2     1  -0.95  -2.35  0.01982722  1.2410011  -0.9301728  -1.108999      1
#> 3     1  -6.20  -2.30  0.77813010 -0.7520586  -5.4218699  -3.052059      2
#> 4     1 -13.90  -2.55  0.49137246 -0.7456776 -13.4086275  -3.295678      2
#> 5     1 -14.40  -5.80  1.00506794 -0.6362403 -13.3949321  -6.436240      2
#> 6     1  -3.60  -1.70 -0.91253799  0.1935483  -4.5125380  -1.506452      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6860 -40575   6875 
#> initial  value 998.131940 
#> iter   2 value 785.566447
#> iter   3 value 772.155593
#> iter   4 value 770.588870
#> iter   5 value 739.805612
#> iter   6 value 731.052874
#> iter   7 value 729.821595
#> iter   8 value 729.793782
#> iter   9 value 729.793744
#> iter   9 value 729.793735
#> iter   9 value 729.793729
#> final  value 729.793729 
#> converged
#> This is Run number  172 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4409470 -0.7932469  -0.99094698 -13.393247      1
#> 2     1  -0.95  -2.35  0.9145395 -0.3289082  -0.03546045  -2.678908      1
#> 3     1  -6.20  -2.30  1.1574568 -0.7803319  -5.04254318  -3.080332      2
#> 4     1 -13.90  -2.55 -0.6775352 -0.5768270 -14.57753519  -3.126827      2
#> 5     1 -14.40  -5.80  0.7977654 -0.2551995 -13.60223459  -6.055199      2
#> 6     1  -3.60  -1.70 -1.0778157  0.3826733  -4.67781574  -1.317327      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5900 -39625   6850 
#> initial  value 998.131940 
#> iter   2 value 801.282254
#> iter   3 value 784.716401
#> iter   4 value 780.606245
#> iter   5 value 747.641999
#> iter   6 value 738.977177
#> iter   7 value 737.740404
#> iter   8 value 737.714532
#> iter   9 value 737.714500
#> iter   9 value 737.714494
#> iter   9 value 737.714490
#> final  value 737.714490 
#> converged
#> This is Run number  173 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1       e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.421346074 0.4893955   0.8713461 -12.1106045      1
#> 2     1  -0.95  -2.35  2.216092730 3.1490119   1.2660927   0.7990119      1
#> 3     1  -6.20  -2.30  1.900551535 1.4918179  -4.2994485  -0.8081821      2
#> 4     1 -13.90  -2.55  1.063080893 1.1520007 -12.8369191  -1.3979993      2
#> 5     1 -14.40  -5.80 -0.003249443 1.4609062 -14.4032494  -4.3390938      2
#> 6     1  -3.60  -1.70  1.932355926 0.7714596  -1.6676441  -0.9285404      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6020 -37375   6250 
#> initial  value 998.131940 
#> iter   2 value 836.943545
#> iter   3 value 826.925249
#> iter   4 value 824.938504
#> iter   5 value 784.846526
#> iter   6 value 776.624489
#> iter   7 value 775.116530
#> iter   8 value 775.084256
#> iter   9 value 775.084190
#> iter   9 value 775.084180
#> iter   9 value 775.084175
#> final  value 775.084175 
#> converged
#> This is Run number  174 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.31013417 -0.2115279  -0.8601342 -12.8115279      1
#> 2     1  -0.95  -2.35 -0.53787463 -0.3893213  -1.4878746  -2.7393213      1
#> 3     1  -6.20  -2.30  0.04893292 -0.3078683  -6.1510671  -2.6078683      2
#> 4     1 -13.90  -2.55 -0.28150001  1.6459548 -14.1815000  -0.9040452      2
#> 5     1 -14.40  -5.80  1.56821981  1.8214466 -12.8317802  -3.9785534      2
#> 6     1  -3.60  -1.70 -0.35828502  2.0678416  -3.9582850   0.3678416      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6080 -39400   7425 
#> initial  value 998.131940 
#> iter   2 value 801.411006
#> iter   3 value 785.492116
#> iter   4 value 782.999205
#> iter   5 value 749.073145
#> iter   6 value 740.496753
#> iter   7 value 739.288779
#> iter   8 value 739.265701
#> iter   9 value 739.265679
#> iter   9 value 739.265672
#> iter   9 value 739.265666
#> final  value 739.265666 
#> converged
#> This is Run number  175 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8872974  0.12341300   0.3372974 -12.4765870      1
#> 2     1  -0.95  -2.35  1.6189959  1.68494407   0.6689959  -0.6650559      1
#> 3     1  -6.20  -2.30  1.8328573 -0.34986021  -4.3671427  -2.6498602      2
#> 4     1 -13.90  -2.55  0.3975676 -0.46245576 -13.5024324  -3.0124558      2
#> 5     1 -14.40  -5.80  0.3211577 -0.06038181 -14.0788423  -5.8603818      2
#> 6     1  -3.60  -1.70 -1.0312273 -1.01319438  -4.6312273  -2.7131944      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5720 -37425   8125 
#> initial  value 998.131940 
#> iter   2 value 825.669270
#> iter   3 value 811.266908
#> iter   4 value 809.984140
#> iter   5 value 769.899215
#> iter   6 value 761.667549
#> iter   7 value 760.451298
#> iter   8 value 760.432272
#> iter   9 value 760.432257
#> iter   9 value 760.432255
#> iter  10 value 760.432241
#> iter  10 value 760.432231
#> iter  10 value 760.432231
#> final  value 760.432231 
#> converged
#> This is Run number  176 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  3.3745435 -0.29377364   2.8245435 -12.893774      1
#> 2     1  -0.95  -2.35 -0.5793627  0.32469731  -1.5293627  -2.025303      1
#> 3     1  -6.20  -2.30 -0.8267588 -1.55561020  -7.0267588  -3.855610      2
#> 4     1 -13.90  -2.55  1.1583074 -0.05119815 -12.7416926  -2.601198      2
#> 5     1 -14.40  -5.80  0.9096218  0.31094409 -13.4903782  -5.489056      2
#> 6     1  -3.60  -1.70  3.2312005 -0.13720072  -0.3687995  -1.837201      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6960 -40275   7050 
#> initial  value 998.131940 
#> iter   2 value 789.275549
#> iter   3 value 776.363160
#> iter   4 value 775.464621
#> iter   5 value 743.600302
#> iter   6 value 734.854965
#> iter   7 value 733.603681
#> iter   8 value 733.576007
#> iter   9 value 733.575967
#> iter  10 value 733.575956
#> iter  10 value 733.575947
#> iter  10 value 733.575940
#> final  value 733.575940 
#> converged
#> This is Run number  177 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.174721419  0.2918176   1.6247214 -12.3081824      1
#> 2     1  -0.95  -2.35  1.541069712  0.4410086   0.5910697  -1.9089914      1
#> 3     1  -6.20  -2.30 -1.090772027  1.9146486  -7.2907720  -0.3853514      2
#> 4     1 -13.90  -2.55  0.377090608 -0.9893143 -13.5229094  -3.5393143      2
#> 5     1 -14.40  -5.80 -0.919079935 -0.7391974 -15.3190799  -6.5391974      2
#> 6     1  -3.60  -1.70  0.001740311  1.1685960  -3.5982597  -0.5314040      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38825   6750 
#> initial  value 998.131940 
#> iter   2 value 813.643151
#> iter   3 value 801.736130
#> iter   4 value 800.051369
#> iter   5 value 764.017687
#> iter   6 value 755.447785
#> iter   7 value 754.051034
#> iter   8 value 754.019933
#> iter   9 value 754.019878
#> iter  10 value 754.019866
#> iter  10 value 754.019858
#> iter  10 value 754.019857
#> final  value 754.019857 
#> converged
#> This is Run number  178 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.157130763  2.14610729  -0.7071308 -10.4538927      1
#> 2     1  -0.95  -2.35 -1.577677435  0.07339648  -2.5276774  -2.2766035      2
#> 3     1  -6.20  -2.30 -0.003356045 -0.17701049  -6.2033560  -2.4770105      2
#> 4     1 -13.90  -2.55  1.337153663 -0.22073210 -12.5628463  -2.7707321      2
#> 5     1 -14.40  -5.80  1.206183765 -0.88403495 -13.1938162  -6.6840350      2
#> 6     1  -3.60  -1.70  1.164644577  2.39105834  -2.4353554   0.6910583      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -39225   7500 
#> initial  value 998.131940 
#> iter   2 value 803.573969
#> iter   3 value 788.306160
#> iter   4 value 786.339931
#> iter   5 value 751.742337
#> iter   6 value 743.178570
#> iter   7 value 741.958460
#> iter   8 value 741.935311
#> iter   9 value 741.935288
#> iter   9 value 741.935279
#> iter   9 value 741.935273
#> final  value 741.935273 
#> converged
#> This is Run number  179 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.36614924  0.3678008  -1.916149 -12.232199      1
#> 2     1  -0.95  -2.35 -0.09774777  0.4061983  -1.047748  -1.943802      1
#> 3     1  -6.20  -2.30 -1.38289196  0.1333675  -7.582892  -2.166633      2
#> 4     1 -13.90  -2.55 -0.60933313 -0.3739232 -14.509333  -2.923923      2
#> 5     1 -14.40  -5.80  1.08012001  2.0695022 -13.319880  -3.730498      2
#> 6     1  -3.60  -1.70  1.76909512 -0.6888554  -1.830905  -2.388855      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5380 -38450   8225 
#> initial  value 998.131940 
#> iter   2 value 810.608798
#> iter   3 value 791.580833
#> iter   4 value 788.319662
#> iter   5 value 751.898298
#> iter   6 value 743.572566
#> iter   7 value 742.413209
#> iter   8 value 742.395716
#> iter   8 value 742.395707
#> final  value 742.395707 
#> converged
#> This is Run number  180 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.42984402 1.15624238  -1.979844 -11.4437576      1
#> 2     1  -0.95  -2.35  0.47558499 1.25333024  -0.474415  -1.0966698      1
#> 3     1  -6.20  -2.30  0.92039109 0.23790478  -5.279609  -2.0620952      2
#> 4     1 -13.90  -2.55  0.11262462 3.27760830 -13.787375   0.7276083      2
#> 5     1 -14.40  -5.80 -0.08676749 0.61826096 -14.486767  -5.1817390      2
#> 6     1  -3.60  -1.70  0.63872769 0.04009302  -2.961272  -1.6599070      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5860 -37675   7550 
#> initial  value 998.131940 
#> iter   2 value 825.792327
#> iter   3 value 812.538935
#> iter   4 value 810.995136
#> iter   5 value 771.683888
#> iter   6 value 763.380591
#> iter   7 value 762.092411
#> iter   8 value 762.069000
#> iter   9 value 762.068970
#> iter   9 value 762.068959
#> iter   9 value 762.068953
#> final  value 762.068953 
#> converged
#> This is Run number  181 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2           U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5501851 -1.44881516  1.851489e-04 -14.048815      1
#> 2     1  -0.95  -2.35 -0.9403997  2.01401200 -1.890400e+00  -0.335988      2
#> 3     1  -6.20  -2.30  3.2561479  0.02313325 -2.943852e+00  -2.276867      2
#> 4     1 -13.90  -2.55 -0.6795747  0.93851184 -1.457957e+01  -1.611488      2
#> 5     1 -14.40  -5.80  3.2273245  2.75636301 -1.117268e+01  -3.043637      2
#> 6     1  -3.60  -1.70  1.3287723  0.62510498 -2.271228e+00  -1.074895      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -37525   7050 
#> initial  value 998.131940 
#> iter   2 value 830.623869
#> iter   3 value 819.786132
#> iter   4 value 818.726984
#> iter   5 value 778.803378
#> iter   6 value 770.524132
#> iter   7 value 769.135738
#> iter   8 value 769.107769
#> iter   9 value 769.107721
#> iter  10 value 769.107707
#> iter  10 value 769.107696
#> iter  10 value 769.107692
#> final  value 769.107692 
#> converged
#> This is Run number  182 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.3877798  1.5985972   0.8377798 -11.0014028      1
#> 2     1  -0.95  -2.35 -0.7188988 -0.9631932  -1.6688988  -3.3131932      1
#> 3     1  -6.20  -2.30  0.9125603 -0.1913886  -5.2874397  -2.4913886      2
#> 4     1 -13.90  -2.55  2.4980210 -1.3445891 -11.4019790  -3.8945891      2
#> 5     1 -14.40  -5.80 -1.2407653  0.8945358 -15.6407653  -4.9054642      2
#> 6     1  -3.60  -1.70  2.6447546  1.3720081  -0.9552454  -0.3279919      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6700 -39350   7025 
#> initial  value 998.131940 
#> iter   2 value 804.029515
#> iter   3 value 791.861529
#> iter   4 value 790.907386
#> iter   5 value 756.253960
#> iter   6 value 747.596710
#> iter   7 value 746.261089
#> iter   8 value 746.231653
#> iter   9 value 746.231605
#> iter  10 value 746.231591
#> iter  10 value 746.231582
#> iter  10 value 746.231575
#> final  value 746.231575 
#> converged
#> This is Run number  183 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.80651529 -0.8156940   0.2565153 -13.415694      1
#> 2     1  -0.95  -2.35 -0.06376154  0.9184796  -1.0137615  -1.431520      1
#> 3     1  -6.20  -2.30 -0.16201991  0.3479954  -6.3620199  -1.952005      2
#> 4     1 -13.90  -2.55 -0.34846009  0.1217536 -14.2484601  -2.428246      2
#> 5     1 -14.40  -5.80 -0.63207541 -0.3123931 -15.0320754  -6.112393      2
#> 6     1  -3.60  -1.70  1.88403816  2.0195630  -1.7159618   0.319563      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -37550   6825 
#> initial  value 998.131940 
#> iter   2 value 831.441654
#> iter   3 value 821.382124
#> iter   4 value 820.418177
#> iter   5 value 780.517258
#> iter   6 value 772.236743
#> iter   7 value 770.800043
#> iter   8 value 770.769984
#> iter   9 value 770.769926
#> iter  10 value 770.769912
#> iter  10 value 770.769902
#> iter  10 value 770.769895
#> final  value 770.769895 
#> converged
#> This is Run number  184 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5336898  0.01430224  -1.0836898 -12.585698      1
#> 2     1  -0.95  -2.35  0.5064921 -0.80267268  -0.4435079  -3.152673      1
#> 3     1  -6.20  -2.30  0.7161820  0.93388315  -5.4838180  -1.366117      2
#> 4     1 -13.90  -2.55  1.8915819 -0.08514197 -12.0084181  -2.635142      2
#> 5     1 -14.40  -5.80  6.7373003  0.54983778  -7.6626997  -5.250162      2
#> 6     1  -3.60  -1.70 -0.7919913 -0.13593672  -4.3919913  -1.835937      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6720 -39750   6125 
#> initial  value 998.131940 
#> iter   2 value 802.582106
#> iter   3 value 791.516142
#> iter   4 value 789.415144
#> iter   5 value 756.164762
#> iter   6 value 747.435155
#> iter   7 value 745.952436
#> iter   8 value 745.914516
#> iter   9 value 745.914429
#> iter   9 value 745.914418
#> iter   9 value 745.914411
#> final  value 745.914411 
#> converged
#> This is Run number  185 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  1.15265139  2.2761791   0.6026514 -10.32382089      1
#> 2     1  -0.95  -2.35 -0.30652863 -0.3118787  -1.2565286  -2.66187870      1
#> 3     1  -6.20  -2.30 -0.41694314  1.1836174  -6.6169431  -1.11638259      2
#> 4     1 -13.90  -2.55  0.41632608  2.6217143 -13.4836739   0.07171428      2
#> 5     1 -14.40  -5.80 -0.03841894  1.2841927 -14.4384189  -4.51580730      2
#> 6     1  -3.60  -1.70 -0.50718130 -0.5421385  -4.1071813  -2.24213851      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -37575   6500 
#> initial  value 998.131940 
#> iter   2 value 832.782799
#> iter   3 value 823.351503
#> iter   4 value 822.216163
#> iter   5 value 782.414388
#> iter   6 value 774.140895
#> iter   7 value 772.643795
#> iter   8 value 772.611360
#> iter   9 value 772.611293
#> iter   9 value 772.611291
#> iter   9 value 772.611291
#> final  value 772.611291 
#> converged
#> This is Run number  186 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.31849409 -1.1475188  -0.2315059 -13.7475188      1
#> 2     1  -0.95  -2.35 -0.22081305  1.6985502  -1.1708130  -0.6514498      2
#> 3     1  -6.20  -2.30  0.05877666  0.1210087  -6.1412233  -2.1789913      2
#> 4     1 -13.90  -2.55  0.40693132 -0.3927151 -13.4930687  -2.9427151      2
#> 5     1 -14.40  -5.80  0.83378602  0.9974509 -13.5662140  -4.8025491      2
#> 6     1  -3.60  -1.70  2.03295389  0.9473908  -1.5670461  -0.7526092      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -37500   6275 
#> initial  value 998.131940 
#> iter   2 value 834.726166
#> iter   3 value 826.636796
#> iter   4 value 825.947470
#> iter   5 value 785.782981
#> iter   6 value 777.551282
#> iter   7 value 775.976183
#> iter   8 value 775.941005
#> iter   9 value 775.940921
#> iter   9 value 775.940919
#> iter   9 value 775.940919
#> final  value 775.940919 
#> converged
#> This is Run number  187 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.1768436 -0.4033544   0.6268436 -13.0033544      1
#> 2     1  -0.95  -2.35  1.7434304  3.3584012   0.7934304   1.0084012      2
#> 3     1  -6.20  -2.30  0.4410919 -0.9225754  -5.7589081  -3.2225754      2
#> 4     1 -13.90  -2.55  0.9139621 -0.4707154 -12.9860379  -3.0207154      2
#> 5     1 -14.40  -5.80  1.8159705 -0.3670249 -12.5840295  -6.1670249      2
#> 6     1  -3.60  -1.70 -0.1686814  2.1369949  -3.7686814   0.4369949      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -37975   6525 
#> initial  value 998.131940 
#> iter   2 value 827.122648
#> iter   3 value 816.774891
#> iter   4 value 815.272899
#> iter   5 value 776.706030
#> iter   6 value 768.322593
#> iter   7 value 766.846473
#> iter   8 value 766.813985
#> iter   9 value 766.813920
#> iter   9 value 766.813920
#> iter   9 value 766.813920
#> final  value 766.813920 
#> converged
#> This is Run number  188 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.0338425  0.8205150   1.483843 -11.7794850      1
#> 2     1  -0.95  -2.35 -0.8180443 -0.8602384  -1.768044  -3.2102384      1
#> 3     1  -6.20  -2.30  0.6849739 -0.3229602  -5.515026  -2.6229602      2
#> 4     1 -13.90  -2.55  0.3239195  1.8556292 -13.576080  -0.6943708      2
#> 5     1 -14.40  -5.80 -0.7300829 -0.2151003 -15.130083  -6.0151003      2
#> 6     1  -3.60  -1.70  1.4884202 -0.5213997  -2.111580  -2.2213997      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5840 -36775   6075 
#> initial  value 998.131940 
#> iter   2 value 845.878251
#> iter   3 value 836.328672
#> iter   4 value 834.205564
#> iter   5 value 792.548050
#> iter   6 value 784.507969
#> iter   7 value 782.994471
#> iter   8 value 782.963394
#> iter   9 value 782.963331
#> iter   9 value 782.963321
#> iter   9 value 782.963317
#> final  value 782.963317 
#> converged
#> This is Run number  189 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.4316206  2.0186043  -0.9816206 -10.581396      1
#> 2     1  -0.95  -2.35 -0.9205920  0.9624501  -1.8705920  -1.387550      2
#> 3     1  -6.20  -2.30 -1.0869945  0.3877159  -7.2869945  -1.912284      2
#> 4     1 -13.90  -2.55  2.7058583  1.2630219 -11.1941417  -1.286978      2
#> 5     1 -14.40  -5.80 -0.1632859 -0.3171861 -14.5632859  -6.117186      2
#> 6     1  -3.60  -1.70  0.7129282  0.3385117  -2.8870718  -1.361488      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6500 -38400   6275 
#> initial  value 998.131940 
#> iter   2 value 822.177848
#> iter   3 value 812.347784
#> iter   4 value 810.892362
#> iter   5 value 773.494169
#> iter   6 value 765.015975
#> iter   7 value 763.480907
#> iter   8 value 763.444953
#> iter   9 value 763.444873
#> iter  10 value 763.444861
#> iter  10 value 763.444854
#> iter  10 value 763.444851
#> final  value 763.444851 
#> converged
#> This is Run number  190 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8669391  1.2829662   0.3169391 -11.3170338      1
#> 2     1  -0.95  -2.35 -0.4963417  1.0327632  -1.4463417  -1.3172368      2
#> 3     1  -6.20  -2.30 -0.1639651  2.4129229  -6.3639651   0.1129229      2
#> 4     1 -13.90  -2.55  2.1850226 -0.4910186 -11.7149774  -3.0410186      2
#> 5     1 -14.40  -5.80  0.4407121  0.6021247 -13.9592879  -5.1978753      2
#> 6     1  -3.60  -1.70  1.5326628  2.8870041  -2.0673372   1.1870041      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7420 -40625   4875 
#> initial  value 998.131940 
#> iter   2 value 793.259227
#> iter   3 value 785.481207
#> iter   4 value 783.382954
#> iter   5 value 752.757599
#> iter   6 value 744.010708
#> iter   7 value 742.141658
#> iter   8 value 742.079824
#> iter   9 value 742.079515
#> iter  10 value 742.079487
#> iter  10 value 742.079486
#> iter  11 value 742.079468
#> iter  11 value 742.079462
#> iter  11 value 742.079459
#> final  value 742.079459 
#> converged
#> This is Run number  191 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.04740747 -0.21692241  -0.5974075 -12.81692241      1
#> 2     1  -0.95  -2.35  1.50952731 -0.55648315   0.5595273  -2.90648315      1
#> 3     1  -6.20  -2.30  0.59228059 -0.18472714  -5.6077194  -2.48472714      2
#> 4     1 -13.90  -2.55  0.69356433  0.02821362 -13.2064357  -2.52178638      2
#> 5     1 -14.40  -5.80 -0.15262047  1.87286297 -14.5526205  -3.92713703      2
#> 6     1  -3.60  -1.70  0.38306370  1.61245394  -3.2169363  -0.08754606      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6000 -38250   6925 
#> initial  value 998.131940 
#> iter   2 value 821.246532
#> iter   3 value 808.446353
#> iter   4 value 806.263232
#> iter   5 value 768.732781
#> iter   6 value 760.285536
#> iter   7 value 758.922635
#> iter   8 value 758.894445
#> iter   9 value 758.894402
#> iter   9 value 758.894392
#> iter   9 value 758.894386
#> final  value 758.894386 
#> converged
#> This is Run number  192 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.77438849  0.3426618   2.224388 -12.257338      1
#> 2     1  -0.95  -2.35  3.31776593  0.4104071   2.367766  -1.939593      1
#> 3     1  -6.20  -2.30 -0.01538850 -1.3005204  -6.215388  -3.600520      2
#> 4     1 -13.90  -2.55  0.05183684 -1.0913297 -13.848163  -3.641330      2
#> 5     1 -14.40  -5.80 -0.54034107  0.2902806 -14.940341  -5.509719      2
#> 6     1  -3.60  -1.70  1.39107077 -0.6858458  -2.208929  -2.385846      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6440 -38950   5975 
#> initial  value 998.131940 
#> iter   2 value 815.636264
#> iter   3 value 804.901308
#> iter   4 value 802.500386
#> iter   5 value 766.969640
#> iter   6 value 758.365476
#> iter   7 value 756.809996
#> iter   8 value 756.771283
#> iter   9 value 756.771187
#> iter  10 value 756.771175
#> iter  10 value 756.771175
#> iter  10 value 756.771170
#> final  value 756.771170 
#> converged
#> This is Run number  193 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60  2.23681938  4.23561905   1.6868194 -8.364381      1
#> 2     1  -0.95  -2.35  0.62215365 -0.08347456  -0.3278463 -2.433475      1
#> 3     1  -6.20  -2.30  3.33367967 -0.82596626  -2.8663203 -3.125966      1
#> 4     1 -13.90  -2.55 -0.60050490  1.25185987 -14.5005049 -1.298140      2
#> 5     1 -14.40  -5.80 -1.04581477 -0.79087053 -15.4458148 -6.590871      2
#> 6     1  -3.60  -1.70  0.04483899 -0.13272195  -3.5551610 -1.832722      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5680 -38450   6875 
#> initial  value 998.131940 
#> iter   2 value 818.718002
#> iter   3 value 803.697893
#> iter   4 value 800.168359
#> iter   5 value 763.562357
#> iter   6 value 755.061158
#> iter   7 value 753.740804
#> iter   8 value 753.714085
#> iter   9 value 753.714049
#> iter   9 value 753.714041
#> iter   9 value 753.714036
#> final  value 753.714036 
#> converged
#> This is Run number  194 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2685430 -0.4870776  -0.8185430 -13.087078      1
#> 2     1  -0.95  -2.35  0.8251384  0.2982941  -0.1248616  -2.051706      1
#> 3     1  -6.20  -2.30 -0.4028685  0.1790501  -6.6028685  -2.120950      2
#> 4     1 -13.90  -2.55  0.2935466 -1.3087466 -13.6064534  -3.858747      2
#> 5     1 -14.40  -5.80  0.5960075  2.7431325 -13.8039925  -3.056868      2
#> 6     1  -3.60  -1.70  0.5781135  1.4689670  -3.0218865  -0.231033      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6960 -41000   6825 
#> initial  value 998.131940 
#> iter   2 value 778.809209
#> iter   3 value 765.158628
#> iter   4 value 763.484505
#> iter   5 value 734.027050
#> iter   6 value 725.271131
#> iter   7 value 724.083866
#> iter   8 value 724.056948
#> iter   9 value 724.056913
#> iter   9 value 724.056912
#> iter   9 value 724.056912
#> final  value 724.056912 
#> converged
#> This is Run number  195 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.8492848 -0.53395365   2.2992848 -13.1339536      1
#> 2     1  -0.95  -2.35  0.3839092  1.63353669  -0.5660908  -0.7164633      1
#> 3     1  -6.20  -2.30 -0.5999922 -0.02843212  -6.7999922  -2.3284321      2
#> 4     1 -13.90  -2.55 -0.1481716 -1.16700661 -14.0481716  -3.7170066      2
#> 5     1 -14.40  -5.80 -0.1826396  0.62942178 -14.5826396  -5.1705782      2
#> 6     1  -3.60  -1.70 -0.3461750  0.92165860  -3.9461750  -0.7783414      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6920 -38300   7675 
#> initial  value 998.131940 
#> iter   2 value 815.378508
#> iter   3 value 803.595570
#> iter   4 value 803.587425
#> iter   5 value 765.383725
#> iter   6 value 757.202761
#> iter   7 value 755.994848
#> iter   8 value 755.973212
#> iter   9 value 755.973177
#> iter   9 value 755.973170
#> iter   9 value 755.973160
#> final  value 755.973160 
#> converged
#> This is Run number  196 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.2584187  1.27538370  -0.2915813 -11.3246163      1
#> 2     1  -0.95  -2.35 -1.1944636  1.60267970  -2.1444636  -0.7473203      2
#> 3     1  -6.20  -2.30  0.3963088  0.04613938  -5.8036912  -2.2538606      2
#> 4     1 -13.90  -2.55  1.2945879 -1.05373477 -12.6054121  -3.6037348      2
#> 5     1 -14.40  -5.80  0.7435609  1.86424057 -13.6564391  -3.9357594      2
#> 6     1  -3.60  -1.70 -0.7769179  0.82060087  -4.3769179  -0.8793991      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6860 -40000   6125 
#> initial  value 998.131940 
#> iter   2 value 798.553892
#> iter   3 value 787.687845
#> iter   4 value 785.804415
#> iter   5 value 753.230464
#> iter   6 value 744.470930
#> iter   7 value 742.997792
#> iter   8 value 742.959543
#> iter   9 value 742.959455
#> iter   9 value 742.959444
#> iter   9 value 742.959437
#> final  value 742.959437 
#> converged
#> This is Run number  197 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.1795092  0.1768442   0.6295092 -12.4231558      1
#> 2     1  -0.95  -2.35  0.4985522  2.6045716  -0.4514478   0.2545716      2
#> 3     1  -6.20  -2.30 -1.2315964  0.9454194  -7.4315964  -1.3545806      2
#> 4     1 -13.90  -2.55 -0.3435481  1.3788827 -14.2435481  -1.1711173      2
#> 5     1 -14.40  -5.80  3.7034150 -0.3254818 -10.6965850  -6.1254818      2
#> 6     1  -3.60  -1.70  2.0566962  3.7886589  -1.5433038   2.0886589      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6820 -40725   7125 
#> initial  value 998.131940 
#> iter   2 value 781.788472
#> iter   3 value 767.303168
#> iter   4 value 765.751687
#> iter   5 value 735.496737
#> iter   6 value 726.782344
#> iter   7 value 725.620422
#> iter   8 value 725.595971
#> iter   9 value 725.595944
#> iter   9 value 725.595937
#> iter   9 value 725.595936
#> final  value 725.595936 
#> converged
#> This is Run number  198 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.676615 -0.4508708   2.1266146 -13.050871      1
#> 2     1  -0.95  -2.35  1.159416 -0.5837382   0.2094159  -2.933738      1
#> 3     1  -6.20  -2.30  1.261371 -0.7553756  -4.9386295  -3.055376      2
#> 4     1 -13.90  -2.55  2.460986 -0.4025537 -11.4390143  -2.952554      2
#> 5     1 -14.40  -5.80  0.898933  2.3905539 -13.5010670  -3.409446      2
#> 6     1  -3.60  -1.70 -1.191725  0.2209825  -4.7917249  -1.479018      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6640 -40000   7100 
#> initial  value 998.131940 
#> iter   2 value 793.663299
#> iter   3 value 779.872106
#> iter   4 value 778.346302
#> iter   5 value 745.856404
#> iter   6 value 737.157314
#> iter   7 value 735.913605
#> iter   8 value 735.886988
#> iter   9 value 735.886953
#> iter   9 value 735.886943
#> iter   9 value 735.886936
#> final  value 735.886936 
#> converged
#> This is Run number  199 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5658026  0.1511926  -1.11580255 -12.4488074      1
#> 2     1  -0.95  -2.35  0.8758248  1.6622111  -0.07417522  -0.6877889      1
#> 3     1  -6.20  -2.30 -0.1747381  1.3247372  -6.37473815  -0.9752628      2
#> 4     1 -13.90  -2.55 -0.6417134  1.1229533 -14.54171342  -1.4270467      2
#> 5     1 -14.40  -5.80  1.6665734 -0.2648074 -12.73342657  -6.0648074      2
#> 6     1  -3.60  -1.70 -0.2353709  0.8166244  -3.83537086  -0.8833756      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6340 -39625   6575 
#> initial  value 998.131940 
#> iter   2 value 802.556116
#> iter   3 value 789.091674
#> iter   4 value 786.330848
#> iter   5 value 752.974064
#> iter   6 value 744.278695
#> iter   7 value 742.933661
#> iter   8 value 742.902636
#> iter   9 value 742.902584
#> iter   9 value 742.902575
#> iter   9 value 742.902570
#> final  value 742.902570 
#> converged
#> This is Run number  200 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.74858405 -0.5936579   0.1985841 -13.19365786      1
#> 2     1  -0.95  -2.35 -0.50898491  0.2072589  -1.4589849  -2.14274111      1
#> 3     1  -6.20  -2.30  2.07503380  3.9442964  -4.1249662   1.64429640      2
#> 4     1 -13.90  -2.55 -0.08858795  2.1107706 -13.9885880  -0.43922944      2
#> 5     1 -14.40  -5.80  0.76113817 -0.5174640 -13.6388618  -6.31746397      2
#> 6     1  -3.60  -1.70 -0.70785248  1.7888556  -4.3078525   0.08885562      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5920 -38250   7125 
#> initial  value 998.131940 
#> iter   2 value 820.162332
#> iter   3 value 806.641201
#> iter   4 value 804.398536
#> iter   5 value 766.912473
#> iter   6 value 758.474755
#> iter   7 value 757.149550
#> iter   8 value 757.123155
#> iter   9 value 757.123118
#> iter   9 value 757.123108
#> iter   9 value 757.123102
#> final  value 757.123102 
#> converged
#> This is Run number  201 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2           U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.7083281 -0.23988548 -1.258328e+00 -12.839885      1
#> 2     1  -0.95  -2.35  0.9506646 -0.50004482  6.645586e-04  -2.850045      1
#> 3     1  -6.20  -2.30 -0.1447649 -0.03361594 -6.344765e+00  -2.333616      2
#> 4     1 -13.90  -2.55  5.9692551 -1.35843711 -7.930745e+00  -3.908437      2
#> 5     1 -14.40  -5.80 -0.6342011  2.02312797 -1.503420e+01  -3.776872      2
#> 6     1  -3.60  -1.70 -0.3238174 -0.69004692 -3.923817e+00  -2.390047      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6820 -39875   5950 
#> initial  value 998.131940 
#> iter   2 value 801.375294
#> iter   3 value 790.814640
#> iter   4 value 788.724097
#> iter   5 value 755.826632
#> iter   6 value 747.081158
#> iter   7 value 745.554604
#> iter   8 value 745.514137
#> iter   9 value 745.514034
#> iter  10 value 745.514022
#> iter  10 value 745.514022
#> iter  10 value 745.514016
#> final  value 745.514016 
#> converged
#> This is Run number  202 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5697809 -0.7909869   0.01978094 -13.3909869      1
#> 2     1  -0.95  -2.35  2.4273928  1.6648303   1.47739277  -0.6851697      1
#> 3     1  -6.20  -2.30  1.4611589  0.3452577  -4.73884110  -1.9547423      2
#> 4     1 -13.90  -2.55 -0.8986482  0.3966028 -14.79864816  -2.1533972      2
#> 5     1 -14.40  -5.80 -1.2740867  0.3010369 -15.67408671  -5.4989631      2
#> 6     1  -3.60  -1.70  1.5582558 -1.1247511  -2.04174419  -2.8247511      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -37450   6125 
#> initial  value 998.131940 
#> iter   2 value 836.231956
#> iter   3 value 828.120323
#> iter   4 value 827.144406
#> iter   5 value 786.934084
#> iter   6 value 778.723677
#> iter   7 value 777.133218
#> iter   8 value 777.097716
#> iter   9 value 777.097631
#> iter   9 value 777.097630
#> iter   9 value 777.097630
#> final  value 777.097630 
#> converged
#> This is Run number  203 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.97575981  1.77107368  -1.525760 -10.828926      1
#> 2     1  -0.95  -2.35 -0.47955729 -0.02563109  -1.429557  -2.375631      1
#> 3     1  -6.20  -2.30 -0.11500065  0.24392994  -6.315001  -2.056070      2
#> 4     1 -13.90  -2.55 -0.32306038  1.25897720 -14.223060  -1.291023      2
#> 5     1 -14.40  -5.80  0.07754566 -0.51699646 -14.322454  -6.316996      2
#> 6     1  -3.60  -1.70 -1.26012197 -0.26795801  -4.860122  -1.967958      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5540 -37525   7425 
#> initial  value 998.131940 
#> iter   2 value 828.662301
#> iter   3 value 814.421967
#> iter   4 value 811.902972
#> iter   5 value 772.426458
#> iter   6 value 764.166167
#> iter   7 value 762.877585
#> iter   8 value 762.854421
#> iter   9 value 762.854394
#> iter   9 value 762.854384
#> iter   9 value 762.854379
#> final  value 762.854379 
#> converged
#> This is Run number  204 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  2.82756837  0.9945737   2.2775684 -11.605426      1
#> 2     1  -0.95  -2.35  0.02854267 -0.2602364  -0.9214573  -2.610236      1
#> 3     1  -6.20  -2.30  0.98715561  1.1569931  -5.2128444  -1.143007      2
#> 4     1 -13.90  -2.55  0.03342283  1.0614358 -13.8665772  -1.488564      2
#> 5     1 -14.40  -5.80 -0.01490610 -0.1229999 -14.4149061  -5.923000      2
#> 6     1  -3.60  -1.70  3.19890631  0.3938729  -0.4010937  -1.306127      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5640 -36900   7025 
#> initial  value 998.131940 
#> iter   2 value 839.381554
#> iter   3 value 827.670726
#> iter   4 value 825.665146
#> iter   5 value 784.278678
#> iter   6 value 776.177329
#> iter   7 value 774.822840
#> iter   8 value 774.797450
#> iter   9 value 774.797412
#> iter   9 value 774.797401
#> iter   9 value 774.797396
#> final  value 774.797396 
#> converged
#> This is Run number  205 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6653152  0.2775223  -1.215315 -12.322478      1
#> 2     1  -0.95  -2.35 -0.3506892  0.9136511  -1.300689  -1.436349      1
#> 3     1  -6.20  -2.30 -0.3339382  4.8395650  -6.533938   2.539565      2
#> 4     1 -13.90  -2.55  0.6295637  1.0879722 -13.270436  -1.462028      2
#> 5     1 -14.40  -5.80 -0.4716169 -0.4118703 -14.871617  -6.211870      2
#> 6     1  -3.60  -1.70  0.1401795 -1.1066294  -3.459821  -2.806629      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6720 -38450   6425 
#> initial  value 998.131940 
#> iter   2 value 820.500551
#> iter   3 value 811.148662
#> iter   4 value 810.325943
#> iter   5 value 772.873807
#> iter   6 value 764.382310
#> iter   7 value 762.850214
#> iter   8 value 762.814215
#> iter   9 value 762.814132
#> iter  10 value 762.814118
#> iter  10 value 762.814109
#> iter  10 value 762.814105
#> final  value 762.814105 
#> converged
#> This is Run number  206 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.00562084  1.3004540   0.4556208 -11.299546      1
#> 2     1  -0.95  -2.35  1.35113052  0.5180916   0.4011305  -1.831908      1
#> 3     1  -6.20  -2.30  0.69321991  0.2222753  -5.5067801  -2.077725      2
#> 4     1 -13.90  -2.55 -0.53267292 -0.1220737 -14.4326729  -2.672074      2
#> 5     1 -14.40  -5.80  2.19095060  0.5133671 -12.2090494  -5.286633      2
#> 6     1  -3.60  -1.70 -0.01871406  0.5301702  -3.6187141  -1.169830      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6640 -38975   8000 
#> initial  value 998.131940 
#> iter   2 value 803.832796
#> iter   3 value 789.484828
#> iter   4 value 789.203618
#> iter   5 value 753.507337
#> iter   6 value 744.940445
#> iter   7 value 743.754970
#> iter   8 value 743.734896
#> iter   9 value 743.734873
#> iter   9 value 743.734867
#> iter   9 value 743.734863
#> final  value 743.734863 
#> converged
#> This is Run number  207 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  1.79827061 -1.0301249   1.248271 -13.63012489      1
#> 2     1  -0.95  -2.35 -0.70996696  1.7787087  -1.659967  -0.57129125      2
#> 3     1  -6.20  -2.30 -0.69222404  0.1297352  -6.892224  -2.17026482      2
#> 4     1 -13.90  -2.55  1.28727624  2.4872409 -12.612724  -0.06275913      2
#> 5     1 -14.40  -5.80 -0.85938065 -0.8659836 -15.259381  -6.66598355      2
#> 6     1  -3.60  -1.70  0.09647942 -0.4644043  -3.503521  -2.16440430      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5460 -39225   7775 
#> initial  value 998.131940 
#> iter   2 value 802.031969
#> iter   3 value 782.092187
#> iter   4 value 777.723227
#> iter   5 value 743.861703
#> iter   6 value 735.404082
#> iter   7 value 734.264279
#> iter   8 value 734.245285
#> iter   8 value 734.245277
#> final  value 734.245277 
#> converged
#> This is Run number  208 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.474340733  1.7911282  -0.07565927 -10.8088718      1
#> 2     1  -0.95  -2.35 -0.556423489  2.9628059  -1.50642349   0.6128059      2
#> 3     1  -6.20  -2.30 -1.296550267  0.3542291  -7.49655027  -1.9457709      2
#> 4     1 -13.90  -2.55 -0.832512501  0.1800411 -14.73251250  -2.3699589      2
#> 5     1 -14.40  -5.80  0.008062101 -0.1892226 -14.39193790  -5.9892226      2
#> 6     1  -3.60  -1.70  0.300677695 -0.3856469  -3.29932230  -2.0856469      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7160 -38275   5350 
#> initial  value 998.131940 
#> iter   2 value 827.439670
#> iter   3 value 821.366945
#> iter   4 value 820.756337
#> iter   5 value 782.650249
#> iter   6 value 774.309125
#> iter   7 value 772.441022
#> iter   8 value 772.393038
#> iter   9 value 772.392877
#> iter  10 value 772.392863
#> iter  10 value 772.392863
#> iter  10 value 772.392859
#> final  value 772.392859 
#> converged
#> This is Run number  209 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8225040 -0.1780247   0.272504 -12.7780247      1
#> 2     1  -0.95  -2.35  2.0999462  1.6790221   1.149946  -0.6709779      1
#> 3     1  -6.20  -2.30  1.2541799  3.1807898  -4.945820   0.8807898      2
#> 4     1 -13.90  -2.55 -1.1655911  0.1878590 -15.065591  -2.3621410      2
#> 5     1 -14.40  -5.80 -0.5826035  1.2253266 -14.982604  -4.5746734      2
#> 6     1  -3.60  -1.70  1.6363569  0.9918696  -1.963643  -0.7081304      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6080 -38725   7000 
#> initial  value 998.131940 
#> iter   2 value 813.924157
#> iter   3 value 800.358844
#> iter   4 value 798.069634
#> iter   5 value 761.970917
#> iter   6 value 753.435851
#> iter   7 value 752.107717
#> iter   8 value 752.080088
#> iter   9 value 752.080048
#> iter   9 value 752.080038
#> iter   9 value 752.080032
#> final  value 752.080032 
#> converged
#> This is Run number  210 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0804471  1.6148739  -1.6304471 -10.9851261      1
#> 2     1  -0.95  -2.35  1.7314486  0.4688926   0.7814486  -1.8811074      1
#> 3     1  -6.20  -2.30  1.5239115  0.2387191  -4.6760885  -2.0612809      2
#> 4     1 -13.90  -2.55 -0.5629955  1.8695882 -14.4629955  -0.6804118      2
#> 5     1 -14.40  -5.80 -0.1106001 -0.1239423 -14.5106001  -5.9239423      2
#> 6     1  -3.60  -1.70  0.8496519 -0.3173498  -2.7503481  -2.0173498      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38525   5900 
#> initial  value 998.131940 
#> iter   2 value 822.255128
#> iter   3 value 812.118377
#> iter   4 value 809.853369
#> iter   5 value 773.052328
#> iter   6 value 764.541898
#> iter   7 value 762.948070
#> iter   8 value 762.909123
#> iter   9 value 762.909023
#> iter  10 value 762.909011
#> iter  10 value 762.909011
#> iter  10 value 762.909006
#> final  value 762.909006 
#> converged
#> This is Run number  211 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.7381860  2.3702811  -1.288186 -10.229719      1
#> 2     1  -0.95  -2.35 -1.0710475 -0.3180330  -2.021048  -2.668033      1
#> 3     1  -6.20  -2.30 -0.1021724  0.1380649  -6.302172  -2.161935      2
#> 4     1 -13.90  -2.55  3.2012258  1.2632025 -10.698774  -1.286798      2
#> 5     1 -14.40  -5.80  0.3240949 -0.5851632 -14.075905  -6.385163      2
#> 6     1  -3.60  -1.70 -0.6865354 -1.2800631  -4.286535  -2.980063      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5640 -38125   7800 
#> initial  value 998.131940 
#> iter   2 value 817.997227
#> iter   3 value 802.145859
#> iter   4 value 799.752160
#> iter   5 value 762.038148
#> iter   6 value 753.679818
#> iter   7 value 752.452537
#> iter   8 value 752.431655
#> iter   9 value 752.431635
#> iter   9 value 752.431629
#> iter   9 value 752.431629
#> final  value 752.431629 
#> converged
#> This is Run number  212 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5518995  0.7412249  -1.101900 -11.858775      1
#> 2     1  -0.95  -2.35 -1.2393277 -0.3694231  -2.189328  -2.719423      1
#> 3     1  -6.20  -2.30  2.7140459  0.6899771  -3.485954  -1.610023      2
#> 4     1 -13.90  -2.55  0.5622765  0.9551819 -13.337723  -1.594818      2
#> 5     1 -14.40  -5.80 -0.3327129 -0.1355594 -14.732713  -5.935559      2
#> 6     1  -3.60  -1.70  0.3038434 -1.2381983  -3.296157  -2.938198      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -39400   5850 
#> initial  value 998.131940 
#> iter   2 value 809.433833
#> iter   3 value 798.150084
#> iter   4 value 795.306960
#> iter   5 value 761.213008
#> iter   6 value 752.519260
#> iter   7 value 750.971687
#> iter   8 value 750.931472
#> iter   9 value 750.931362
#> iter  10 value 750.931350
#> iter  10 value 750.931349
#> iter  10 value 750.931343
#> final  value 750.931343 
#> converged
#> This is Run number  213 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1       e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8397235 0.8683139   0.2897235 -11.7316861      1
#> 2     1  -0.95  -2.35 -0.5890346 0.9158195  -1.5390346  -1.4341805      2
#> 3     1  -6.20  -2.30  2.0217331 0.8086952  -4.1782669  -1.4913048      2
#> 4     1 -13.90  -2.55 -1.1671817 0.2152469 -15.0671817  -2.3347531      2
#> 5     1 -14.40  -5.80  0.6411148 0.3520927 -13.7588852  -5.4479073      2
#> 6     1  -3.60  -1.70  0.1473700 1.2898364  -3.4526300  -0.4101636      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5560 -35925   6275 
#> initial  value 998.131940 
#> iter   2 value 855.875285
#> iter   3 value 846.557284
#> iter   4 value 844.541095
#> iter   5 value 800.651093
#> iter   6 value 792.889076
#> iter   7 value 791.466039
#> iter   8 value 791.439678
#> iter   9 value 791.439632
#> iter   9 value 791.439631
#> iter   9 value 791.439631
#> final  value 791.439631 
#> converged
#> This is Run number  214 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5880903  1.72894066   0.03809032 -10.871059      1
#> 2     1  -0.95  -2.35 -1.3183744  0.02608701  -2.26837443  -2.323913      1
#> 3     1  -6.20  -2.30 -0.5867485 -0.76564477  -6.78674846  -3.065645      2
#> 4     1 -13.90  -2.55  2.5043098  0.68273099 -11.39569015  -1.867269      2
#> 5     1 -14.40  -5.80  3.0882450 -1.53274335 -11.31175496  -7.332743      2
#> 6     1  -3.60  -1.70 -1.2458252 -0.81017421  -4.84582520  -2.510174      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6380 -38750   7775 
#> initial  value 998.131940 
#> iter   2 value 808.808801
#> iter   3 value 794.775476
#> iter   4 value 794.006426
#> iter   5 value 757.686181
#> iter   6 value 749.161460
#> iter   7 value 747.932226
#> iter   8 value 747.910021
#> iter   9 value 747.909995
#> iter   9 value 747.909988
#> iter   9 value 747.909986
#> final  value 747.909986 
#> converged
#> This is Run number  215 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.09169008 -0.1369218  -0.4583099 -12.7369218      1
#> 2     1  -0.95  -2.35 -0.09315536 -0.6526726  -1.0431554  -3.0026726      1
#> 3     1  -6.20  -2.30 -0.45936153  3.2561633  -6.6593615   0.9561633      2
#> 4     1 -13.90  -2.55 -0.26124703 -0.3651859 -14.1612470  -2.9151859      2
#> 5     1 -14.40  -5.80  1.02114270  1.0287486 -13.3788573  -4.7712514      2
#> 6     1  -3.60  -1.70 -0.30273714  0.8162572  -3.9027371  -0.8837428      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6000 -39350   7125 
#> initial  value 998.131940 
#> iter   2 value 803.935733
#> iter   3 value 788.262130
#> iter   4 value 785.181803
#> iter   5 value 751.201637
#> iter   6 value 742.598680
#> iter   7 value 741.353379
#> iter   8 value 741.328242
#> iter   9 value 741.328214
#> iter   9 value 741.328206
#> iter   9 value 741.328201
#> final  value 741.328201 
#> converged
#> This is Run number  216 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2066983  2.6146710  -0.7566983 -9.9853290      1
#> 2     1  -0.95  -2.35  0.3564629  1.9682892  -0.5935371 -0.3817108      2
#> 3     1  -6.20  -2.30  1.0512524  1.6769366  -5.1487476 -0.6230634      2
#> 4     1 -13.90  -2.55  2.0165478  0.8636186 -11.8834522 -1.6863814      2
#> 5     1 -14.40  -5.80  1.2738111  0.2055095 -13.1261889 -5.5944905      2
#> 6     1  -3.60  -1.70 -0.4822271 -0.4540221  -4.0822271 -2.1540221      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5720 -37900   7275 
#> initial  value 998.131940 
#> iter   2 value 824.311550
#> iter   3 value 810.335267
#> iter   4 value 807.912021
#> iter   5 value 769.479035
#> iter   6 value 761.124843
#> iter   7 value 759.819415
#> iter   8 value 759.794711
#> iter   9 value 759.794680
#> iter   9 value 759.794670
#> iter   9 value 759.794665
#> final  value 759.794665 
#> converged
#> This is Run number  217 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 0.9269806 -0.4281532   0.3769806 -13.028153      1
#> 2     1  -0.95  -2.35 1.9402842 -0.3252042   0.9902842  -2.675204      1
#> 3     1  -6.20  -2.30 3.3392293  0.3297800  -2.8607707  -1.970220      2
#> 4     1 -13.90  -2.55 1.6926674 -0.6094662 -12.2073326  -3.159466      2
#> 5     1 -14.40  -5.80 3.9327639 -0.1386314 -10.4672361  -5.938631      2
#> 6     1  -3.60  -1.70 1.6349908 -1.3948699  -1.9650092  -3.094870      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5900 -39075   7025 
#> initial  value 998.131940 
#> iter   2 value 808.666363
#> iter   3 value 793.236179
#> iter   4 value 789.971672
#> iter   5 value 755.191358
#> iter   6 value 746.609712
#> iter   7 value 745.335143
#> iter   8 value 745.309189
#> iter   9 value 745.309157
#> iter   9 value 745.309150
#> iter   9 value 745.309145
#> final  value 745.309145 
#> converged
#> This is Run number  218 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2        U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.16000160 -0.03526239  -1.710002 -12.63526239      1
#> 2     1  -0.95  -2.35 -0.89423071 -0.64229143  -1.844231  -2.99229143      1
#> 3     1  -6.20  -2.30 -1.17382981  0.14981155  -7.373830  -2.15018845      2
#> 4     1 -13.90  -2.55  0.22575472 -0.32449013 -13.674245  -2.87449013      2
#> 5     1 -14.40  -5.80 -0.03684955  0.32234712 -14.436850  -5.47765288      2
#> 6     1  -3.60  -1.70  0.28921266  1.60723484  -3.310787  -0.09276516      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5920 -38300   7725 
#> initial  value 998.131940 
#> iter   2 value 815.900592
#> iter   3 value 801.140831
#> iter   4 value 799.430577
#> iter   5 value 762.025225
#> iter   6 value 753.610059
#> iter   7 value 752.369440
#> iter   8 value 752.347448
#> iter   9 value 752.347424
#> iter   9 value 752.347416
#> iter   9 value 752.347410
#> final  value 752.347410 
#> converged
#> This is Run number  219 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.91658657  3.91101543  -1.4665866 -8.688985      1
#> 2     1  -0.95  -2.35  0.08912086  0.07344246  -0.8608791 -2.276558      1
#> 3     1  -6.20  -2.30  1.74606889  0.59702546  -4.4539311 -1.702975      2
#> 4     1 -13.90  -2.55  2.04921261  0.42832508 -11.8507874 -2.121675      2
#> 5     1 -14.40  -5.80  1.52153305 -0.40264686 -12.8784670 -6.202647      2
#> 6     1  -3.60  -1.70  0.54033159 -0.86860529  -3.0596684 -2.568605      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6420 -38650   6850 
#> initial  value 998.131940 
#> iter   2 value 815.638568
#> iter   3 value 804.051855
#> iter   4 value 802.712554
#> iter   5 value 766.072786
#> iter   6 value 757.535318
#> iter   7 value 756.138987
#> iter   8 value 756.108346
#> iter   9 value 756.108292
#> iter  10 value 756.108279
#> iter  10 value 756.108270
#> iter  10 value 756.108268
#> final  value 756.108268 
#> converged
#> This is Run number  220 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1       e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.0654828 0.6547639  -1.6154828 -11.94523608      1
#> 2     1  -0.95  -2.35  0.3993259 0.3562450  -0.5506741  -1.99375501      1
#> 3     1  -6.20  -2.30  2.7682318 1.1207055  -3.4317682  -1.17929447      2
#> 4     1 -13.90  -2.55  1.0575306 1.3948554 -12.8424694  -1.15514458      2
#> 5     1 -14.40  -5.80  2.4069026 0.2330548 -11.9930974  -5.56694521      2
#> 6     1  -3.60  -1.70 -1.1249150 1.7991393  -4.7249150   0.09913926      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5820 -37775   7350 
#> initial  value 998.131940 
#> iter   2 value 825.601490
#> iter   3 value 812.297340
#> iter   4 value 810.377079
#> iter   5 value 771.446108
#> iter   6 value 763.119233
#> iter   7 value 761.810783
#> iter   8 value 761.786157
#> iter   9 value 761.786125
#> iter   9 value 761.786114
#> iter   9 value 761.786108
#> final  value 761.786108 
#> converged
#> This is Run number  221 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1          e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.9000783 -0.004409697   0.3500783 -12.604410      1
#> 2     1  -0.95  -2.35 -0.4800878  0.563000045  -1.4300878  -1.787000      1
#> 3     1  -6.20  -2.30  0.4041835  0.605752274  -5.7958165  -1.694248      2
#> 4     1 -13.90  -2.55 -0.7918820  0.761345481 -14.6918820  -1.788655      2
#> 5     1 -14.40  -5.80  0.8632203  0.200058745 -13.5367797  -5.599941      2
#> 6     1  -3.60  -1.70  0.8651042  0.042409954  -2.7348958  -1.657590      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -39000   7225 
#> initial  value 998.131940 
#> iter   2 value 808.253020
#> iter   3 value 795.813338
#> iter   4 value 794.951389
#> iter   5 value 759.274754
#> iter   6 value 750.677054
#> iter   7 value 749.358660
#> iter   8 value 749.331012
#> iter   9 value 749.330969
#> iter  10 value 749.330956
#> iter  10 value 749.330946
#> iter  10 value 749.330939
#> final  value 749.330939 
#> converged
#> This is Run number  222 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5974888  0.7207872  -1.147489 -11.8792128      1
#> 2     1  -0.95  -2.35  2.4177932  1.2107015   1.467793  -1.1392985      1
#> 3     1  -6.20  -2.30 -0.9147225  0.8125029  -7.114723  -1.4874971      2
#> 4     1 -13.90  -2.55  0.9994110  2.1232375 -12.900589  -0.4267625      2
#> 5     1 -14.40  -5.80 -1.0913688  4.5534294 -15.491369  -1.2465706      2
#> 6     1  -3.60  -1.70 -0.0112052 -0.3993452  -3.611205  -2.0993452      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -38075   7100 
#> initial  value 998.131940 
#> iter   2 value 822.261078
#> iter   3 value 811.942835
#> iter   4 value 811.632289
#> iter   5 value 773.078012
#> iter   6 value 764.644017
#> iter   7 value 763.231041
#> iter   8 value 763.200911
#> iter   9 value 763.200851
#> iter  10 value 763.200835
#> iter  10 value 763.200825
#> iter  10 value 763.200818
#> final  value 763.200818 
#> converged
#> This is Run number  223 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1           U_2 CHOICE
#> 1     1  -0.55 -12.60  1.8476100  1.3207487   1.297610 -11.279251334      1
#> 2     1  -0.95  -2.35 -0.8531956  2.3562997  -1.803196   0.006299748      2
#> 3     1  -6.20  -2.30  1.3090482 -1.4392946  -4.890952  -3.739294611      2
#> 4     1 -13.90  -2.55  0.7109863  1.2417223 -13.189014  -1.308277719      2
#> 5     1 -14.40  -5.80  2.1710187  0.4505619 -12.228981  -5.349438056      2
#> 6     1  -3.60  -1.70 -1.3060764 -0.1635694  -4.906076  -1.863569387      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6280 -37325   6150 
#> initial  value 998.131940 
#> iter   2 value 837.964233
#> iter   3 value 829.286267
#> iter   4 value 827.941315
#> iter   5 value 787.517484
#> iter   6 value 779.333333
#> iter   7 value 777.774281
#> iter   8 value 777.740246
#> iter   9 value 777.740170
#> iter   9 value 777.740170
#> iter   9 value 777.740170
#> final  value 777.740170 
#> converged
#> This is Run number  224 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.1452453  0.13098693  -1.6952453 -12.4690131      1
#> 2     1  -0.95  -2.35  0.3876162  0.77493437  -0.5623838  -1.5750656      1
#> 3     1  -6.20  -2.30  1.6711713  0.74241078  -4.5288287  -1.5575892      2
#> 4     1 -13.90  -2.55 -0.7816148  1.76706709 -14.6816148  -0.7829329      2
#> 5     1 -14.40  -5.80  0.4505547 -0.46879084 -13.9494453  -6.2687908      2
#> 6     1  -3.60  -1.70  0.3612035  0.07746109  -3.2387965  -1.6225389      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5960 -36850   6500 
#> initial  value 998.131940 
#> iter   2 value 842.752952
#> iter   3 value 833.218933
#> iter   4 value 831.692715
#> iter   5 value 790.047163
#> iter   6 value 781.982992
#> iter   7 value 780.525025
#> iter   8 value 780.495636
#> iter   9 value 780.495581
#> iter   9 value 780.495578
#> iter   9 value 780.495578
#> final  value 780.495578 
#> converged
#> This is Run number  225 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.5534737  0.51978165  -1.103474 -12.080218      1
#> 2     1  -0.95  -2.35  2.2873416  0.72168668   1.337342  -1.628313      1
#> 3     1  -6.20  -2.30  2.7367478  0.46097836  -3.463252  -1.839022      2
#> 4     1 -13.90  -2.55  2.6558252 -0.38613520 -11.244175  -2.936135      2
#> 5     1 -14.40  -5.80  3.9567387 -0.21961638 -10.443261  -6.019616      2
#> 6     1  -3.60  -1.70  2.2565819 -0.01522072  -1.343418  -1.715221      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6240 -38975   8025 
#> initial  value 998.131940 
#> iter   2 value 804.001710
#> iter   3 value 788.334758
#> iter   4 value 787.279503
#> iter   5 value 751.775799
#> iter   6 value 743.269799
#> iter   7 value 742.099602
#> iter   8 value 742.080249
#> iter   9 value 742.080228
#> iter   9 value 742.080220
#> iter   9 value 742.080216
#> final  value 742.080216 
#> converged
#> This is Run number  226 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  1.7441052  0.2947034   1.194105 -12.30529658      1
#> 2     1  -0.95  -2.35 -0.7036946 -1.5217352  -1.653695  -3.87173525      1
#> 3     1  -6.20  -2.30  0.6120319  1.3815294  -5.587968  -0.91847058      2
#> 4     1 -13.90  -2.55  0.9700783  2.5828218 -12.929922   0.03282182      2
#> 5     1 -14.40  -5.80  0.2687309  2.1144806 -14.131269  -3.68551941      2
#> 6     1  -3.60  -1.70 -1.2389821  0.4902838  -4.838982  -1.20971616      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7160 -38425   5725 
#> initial  value 998.131940 
#> iter   2 value 823.668463
#> iter   3 value 816.850808
#> iter   4 value 816.408532
#> iter   5 value 778.669920
#> iter   6 value 770.251297
#> iter   7 value 768.484599
#> iter   8 value 768.439764
#> iter   9 value 768.439627
#> iter  10 value 768.439613
#> iter  10 value 768.439609
#> iter  10 value 768.439606
#> final  value 768.439606 
#> converged
#> This is Run number  227 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  3.4441583  2.6284613   2.894158 -9.9715387      1
#> 2     1  -0.95  -2.35 -1.0597370  0.4807928  -2.009737 -1.8692072      2
#> 3     1  -6.20  -2.30  0.2773811  2.1961445  -5.922619 -0.1038555      2
#> 4     1 -13.90  -2.55 -0.8482658  1.0370210 -14.748266 -1.5129790      2
#> 5     1 -14.40  -5.80  0.1758028 -0.3642346 -14.224197 -6.1642346      2
#> 6     1  -3.60  -1.70  1.4461426  0.4603274  -2.153857 -1.2396726      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6220 -36625   5775 
#> initial  value 998.131940 
#> iter   2 value 849.049071
#> iter   3 value 841.696413
#> iter   4 value 840.394412
#> iter   5 value 798.144243
#> iter   6 value 790.213110
#> iter   7 value 788.605465
#> iter   8 value 788.571698
#> iter   9 value 788.571618
#> iter   9 value 788.571608
#> iter   9 value 788.571604
#> final  value 788.571604 
#> converged
#> This is Run number  228 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.0447475 -0.40380582  -0.5052525 -13.0038058      1
#> 2     1  -0.95  -2.35  3.5619603  1.67717616   2.6119603  -0.6728238      1
#> 3     1  -6.20  -2.30  0.7238402  3.03673666  -5.4761598   0.7367367      2
#> 4     1 -13.90  -2.55  0.7806459 -0.08152807 -13.1193541  -2.6315281      2
#> 5     1 -14.40  -5.80  0.9494378  1.00268280 -13.4505622  -4.7973172      2
#> 6     1  -3.60  -1.70 -0.5529688  0.98569664  -4.1529688  -0.7143034      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5500 -36900   7075 
#> initial  value 998.131940 
#> iter   2 value 839.113520
#> iter   3 value 826.637404
#> iter   4 value 824.257472
#> iter   5 value 782.968090
#> iter   6 value 774.862478
#> iter   7 value 773.525022
#> iter   8 value 773.500427
#> iter   9 value 773.500393
#> iter   9 value 773.500383
#> iter   9 value 773.500378
#> final  value 773.500378 
#> converged
#> This is Run number  229 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.9852670  2.5355131   1.4352670 -10.0644869      1
#> 2     1  -0.95  -2.35  1.1320253  1.9968171   0.1820253  -0.3531829      1
#> 3     1  -6.20  -2.30 -0.6673611 -1.0597203  -6.8673611  -3.3597203      2
#> 4     1 -13.90  -2.55  1.0495013  1.3418826 -12.8504987  -1.2081174      2
#> 5     1 -14.40  -5.80 -0.8831389  0.1121219 -15.2831389  -5.6878781      2
#> 6     1  -3.60  -1.70  1.0609421  2.1497227  -2.5390579   0.4497227      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6120 -37525   7850 
#> initial  value 998.131940 
#> iter   2 value 825.892580
#> iter   3 value 813.272609
#> iter   4 value 812.660445
#> iter   5 value 772.686939
#> iter   6 value 764.388726
#> iter   7 value 763.125869
#> iter   8 value 763.104057
#> iter   9 value 763.104028
#> iter   9 value 763.104020
#> iter   9 value 763.104012
#> final  value 763.104012 
#> converged
#> This is Run number  230 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.03255199  2.7785120  -0.517448 -9.8214880      1
#> 2     1  -0.95  -2.35  2.77938134  1.2514665   1.829381 -1.0985335      1
#> 3     1  -6.20  -2.30 -0.21063749 -0.5963459  -6.410637 -2.8963459      2
#> 4     1 -13.90  -2.55  1.91723859  3.5261275 -11.982761  0.9761275      2
#> 5     1 -14.40  -5.80  0.72171373  0.8986288 -13.678286 -4.9013712      2
#> 6     1  -3.60  -1.70  0.61462267  0.4009530  -2.985377 -1.2990470      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5860 -38025   8150 
#> initial  value 998.131940 
#> iter   2 value 817.132946
#> iter   3 value 801.813499
#> iter   4 value 800.504616
#> iter   5 value 762.214966
#> iter   6 value 753.869159
#> iter   7 value 752.672882
#> iter   8 value 752.654045
#> iter   9 value 752.654027
#> iter   9 value 752.654020
#> iter   9 value 752.654016
#> final  value 752.654016 
#> converged
#> This is Run number  231 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1          e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.73531656 -1.530465749  -1.285317 -14.1304657      1
#> 2     1  -0.95  -2.35 -0.48852775  2.150363214  -1.438528  -0.1996368      2
#> 3     1  -6.20  -2.30  0.10929049 -0.962438246  -6.090710  -3.2624382      2
#> 4     1 -13.90  -2.55  0.11701363 -1.239015260 -13.782986  -3.7890153      2
#> 5     1 -14.40  -5.80 -0.35429037  0.002149594 -14.754290  -5.7978504      2
#> 6     1  -3.60  -1.70 -0.05224961  2.132736925  -3.652250   0.4327369      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -39450   7575 
#> initial  value 998.131940 
#> iter   2 value 799.503982
#> iter   3 value 784.965112
#> iter   4 value 783.844908
#> iter   5 value 749.690918
#> iter   6 value 741.080205
#> iter   7 value 739.869311
#> iter   8 value 739.846278
#> iter   9 value 739.846252
#> iter   9 value 739.846244
#> iter   9 value 739.846243
#> final  value 739.846243 
#> converged
#> This is Run number  232 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.8773840 -0.03556040  -1.4273840 -12.6355604      1
#> 2     1  -0.95  -2.35  1.5218759  3.73471566   0.5718759   1.3847157      2
#> 3     1  -6.20  -2.30 -0.7278281 -0.01909818  -6.9278281  -2.3190982      2
#> 4     1 -13.90  -2.55  1.0088512  0.66409343 -12.8911488  -1.8859066      2
#> 5     1 -14.40  -5.80  3.3750571  0.66021795 -11.0249429  -5.1397820      2
#> 6     1  -3.60  -1.70  0.3978376  1.34839978  -3.2021624  -0.3516002      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -38800   6175 
#> initial  value 998.131940 
#> iter   2 value 817.016408
#> iter   3 value 805.408360
#> iter   4 value 802.782092
#> iter   5 value 766.891990
#> iter   6 value 758.309422
#> iter   7 value 756.814807
#> iter   8 value 756.779226
#> iter   9 value 756.779148
#> iter   9 value 756.779137
#> iter   9 value 756.779131
#> final  value 756.779131 
#> converged
#> This is Run number  233 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.48119914  0.7116074  -1.031199 -11.8883926      1
#> 2     1  -0.95  -2.35 -0.44626121  0.1265621  -1.396261  -2.2234379      1
#> 3     1  -6.20  -2.30  0.08820424  0.6102511  -6.111796  -1.6897489      2
#> 4     1 -13.90  -2.55  0.58974194 -1.2617690 -13.310258  -3.8117690      2
#> 5     1 -14.40  -5.80 -0.15078747  4.0017594 -14.550787  -1.7982406      2
#> 6     1  -3.60  -1.70  2.03602961  1.5876173  -1.563970  -0.1123827      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6360 -39025   6975 
#> initial  value 998.131940 
#> iter   2 value 809.472073
#> iter   3 value 796.658382
#> iter   4 value 794.968249
#> iter   5 value 759.567558
#> iter   6 value 750.973226
#> iter   7 value 749.635459
#> iter   8 value 749.606661
#> iter   9 value 749.606616
#> iter  10 value 749.606605
#> iter  10 value 749.606597
#> iter  10 value 749.606591
#> final  value 749.606591 
#> converged
#> This is Run number  234 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.20312965 -0.4369401  -0.7531296 -13.036940      1
#> 2     1  -0.95  -2.35  1.58038645 -0.5655113   0.6303864  -2.915511      1
#> 3     1  -6.20  -2.30  0.68258610 -0.3409222  -5.5174139  -2.640922      2
#> 4     1 -13.90  -2.55  1.08750589 -0.4550891 -12.8124941  -3.005089      2
#> 5     1 -14.40  -5.80 -0.09852209 -1.1345732 -14.4985221  -6.934573      2
#> 6     1  -3.60  -1.70 -0.64938331 -1.0224924  -4.2493833  -2.722492      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6620 -40700   6375 
#> initial  value 998.131940 
#> iter   2 value 786.396879
#> iter   3 value 772.502015
#> iter   4 value 769.353571
#> iter   5 value 739.332176
#> iter   6 value 730.547941
#> iter   7 value 729.276095
#> iter   8 value 729.245000
#> iter   9 value 729.244945
#> iter   9 value 729.244939
#> iter   9 value 729.244933
#> final  value 729.244933 
#> converged
#> This is Run number  235 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.80982266  1.4263786  -1.3598227 -11.173621      1
#> 2     1  -0.95  -2.35  1.27694536  0.9225383   0.3269454  -1.427462      1
#> 3     1  -6.20  -2.30  2.98622402 -0.3988181  -3.2137760  -2.698818      2
#> 4     1 -13.90  -2.55 -0.36101653  0.3252803 -14.2610165  -2.224720      2
#> 5     1 -14.40  -5.80 -0.07688913  0.3382052 -14.4768891  -5.461795      2
#> 6     1  -3.60  -1.70 -0.33120811  0.2577318  -3.9312081  -1.442268      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5980 -38925   7200 
#> initial  value 998.131940 
#> iter   2 value 809.888783
#> iter   3 value 794.990142
#> iter   4 value 792.372727
#> iter   5 value 757.001830
#> iter   6 value 748.455523
#> iter   7 value 747.182970
#> iter   8 value 747.157635
#> iter   9 value 747.157605
#> iter   9 value 747.157596
#> iter   9 value 747.157591
#> final  value 747.157591 
#> converged
#> This is Run number  236 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.7965914 -0.04870332   1.246591 -12.6487033      1
#> 2     1  -0.95  -2.35 -0.3530705 -0.35677258  -1.303071  -2.7067726      1
#> 3     1  -6.20  -2.30  0.6195920 -0.69061997  -5.580408  -2.9906200      2
#> 4     1 -13.90  -2.55  0.6252621  1.19040595 -13.274738  -1.3595940      2
#> 5     1 -14.40  -5.80  0.5936413 -0.27481174 -13.806359  -6.0748117      2
#> 6     1  -3.60  -1.70 -0.5563107  2.55929414  -4.156311   0.8592941      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5900 -38250   7375 
#> initial  value 998.131940 
#> iter   2 value 818.729364
#> iter   3 value 804.677775
#> iter   4 value 802.616641
#> iter   5 value 765.113626
#> iter   6 value 756.689200
#> iter   7 value 755.400449
#> iter   8 value 755.375906
#> iter   9 value 755.375875
#> iter   9 value 755.375865
#> iter   9 value 755.375859
#> final  value 755.375859 
#> converged
#> This is Run number  237 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2        U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.00448599  0.5773295  -1.554486 -12.02267052      1
#> 2     1  -0.95  -2.35 -1.05295748  2.4025245  -2.002957   0.05252447      2
#> 3     1  -6.20  -2.30 -0.17379317  4.6904100  -6.373793   2.39041002      2
#> 4     1 -13.90  -2.55  0.08746244 -0.7566977 -13.812538  -3.30669772      2
#> 5     1 -14.40  -5.80  0.30851843  1.6665333 -14.091482  -4.13346667      2
#> 6     1  -3.60  -1.70  0.53126972  0.2393648  -3.068730  -1.46063515      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6240 -39125   7100 
#> initial  value 998.131940 
#> iter   2 value 807.356921
#> iter   3 value 793.531199
#> iter   4 value 791.502450
#> iter   5 value 756.531381
#> iter   6 value 747.937458
#> iter   7 value 746.641842
#> iter   8 value 746.614866
#> iter   9 value 746.614830
#> iter   9 value 746.614820
#> iter   9 value 746.614814
#> final  value 746.614814 
#> converged
#> This is Run number  238 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.8405225  1.2268711   0.2905225 -11.3731289      1
#> 2     1  -0.95  -2.35 -0.1030576  0.2193215  -1.0530576  -2.1306785      1
#> 3     1  -6.20  -2.30  0.6144532  1.3732119  -5.5855468  -0.9267881      2
#> 4     1 -13.90  -2.55 -0.2888606 -0.9605566 -14.1888606  -3.5105566      2
#> 5     1 -14.40  -5.80  0.2597323  2.3425253 -14.1402677  -3.4574747      2
#> 6     1  -3.60  -1.70 -0.6243951  0.1923333  -4.2243951  -1.5076667      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6260 -38050   6900 
#> initial  value 998.131940 
#> iter   2 value 824.087932
#> iter   3 value 812.903341
#> iter   4 value 811.618463
#> iter   5 value 773.234850
#> iter   6 value 764.827717
#> iter   7 value 763.423150
#> iter   8 value 763.393480
#> iter   9 value 763.393428
#> iter  10 value 763.393414
#> iter  10 value 763.393404
#> iter  10 value 763.393400
#> final  value 763.393400 
#> converged
#> This is Run number  239 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  3.1772484  0.2126690   2.6272484 -12.387331      1
#> 2     1  -0.95  -2.35  0.0816046  0.2679445  -0.8683954  -2.082055      1
#> 3     1  -6.20  -2.30 -0.2190574  0.3126964  -6.4190574  -1.987304      2
#> 4     1 -13.90  -2.55  0.9748933  1.1207130 -12.9251067  -1.429287      2
#> 5     1 -14.40  -5.80  2.5001654  0.1922016 -11.8998346  -5.607798      2
#> 6     1  -3.60  -1.70  0.2016867 -0.2987466  -3.3983133  -1.998747      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6560 -39400   6925 
#> initial  value 998.131940 
#> iter   2 value 803.957698
#> iter   3 value 791.377019
#> iter   4 value 789.925105
#> iter   5 value 755.555420
#> iter   6 value 746.898259
#> iter   7 value 745.564684
#> iter   8 value 745.535133
#> iter   9 value 745.535085
#> iter  10 value 745.535074
#> iter  10 value 745.535065
#> iter  10 value 745.535060
#> final  value 745.535060 
#> converged
#> This is Run number  240 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  5.0093042 1.02414952   4.459304 -11.57585048      1
#> 2     1  -0.95  -2.35  3.3717477 0.58398147   2.421748  -1.76601853      1
#> 3     1  -6.20  -2.30 -0.5433670 2.35125957  -6.743367   0.05125957      2
#> 4     1 -13.90  -2.55  0.4631510 0.70165006 -13.436849  -1.84834994      2
#> 5     1 -14.40  -5.80  0.4880912 0.03061548 -13.911909  -5.76938452      2
#> 6     1  -3.60  -1.70  1.9404469 0.27519715  -1.659553  -1.42480285      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6700 -38775   7350 
#> initial  value 998.131940 
#> iter   2 value 810.726593
#> iter   3 value 798.730358
#> iter   4 value 798.302582
#> iter   5 value 761.871486
#> iter   6 value 753.298017
#> iter   7 value 751.974126
#> iter   8 value 751.946825
#> iter   9 value 751.946781
#> iter  10 value 751.946766
#> iter  10 value 751.946757
#> iter  10 value 751.946749
#> final  value 751.946749 
#> converged
#> This is Run number  241 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.31016368  0.8647829  -0.8601637 -11.7352171      1
#> 2     1  -0.95  -2.35  1.11268413  3.9797480   0.1626841   1.6297480      2
#> 3     1  -6.20  -2.30  0.35103620  0.9718929  -5.8489638  -1.3281071      2
#> 4     1 -13.90  -2.55 -0.52632554 -0.3870442 -14.4263255  -2.9370442      2
#> 5     1 -14.40  -5.80 -0.01124584 -0.2165955 -14.4112458  -6.0165955      2
#> 6     1  -3.60  -1.70 -0.87348806  1.3790042  -4.4734881  -0.3209958      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6720 -40375   6750 
#> initial  value 998.131940 
#> iter   2 value 789.591202
#> iter   3 value 776.204988
#> iter   4 value 774.224881
#> iter   5 value 742.933012
#> iter   6 value 734.183495
#> iter   7 value 732.917333
#> iter   8 value 732.888181
#> iter   9 value 732.888137
#> iter   9 value 732.888137
#> iter   9 value 732.888137
#> final  value 732.888137 
#> converged
#> This is Run number  242 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.6494390  1.54342819   0.09943900 -11.0565718      1
#> 2     1  -0.95  -2.35  1.0192253  0.08960209   0.06922532  -2.2603979      1
#> 3     1  -6.20  -2.30 -0.3140770  2.96674827  -6.51407703   0.6667483      2
#> 4     1 -13.90  -2.55 -0.3208263  2.28910240 -14.22082633  -0.2608976      2
#> 5     1 -14.40  -5.80  1.5841395 -0.17950177 -12.81586051  -5.9795018      2
#> 6     1  -3.60  -1.70  0.5659185 -0.62849461  -3.03408154  -2.3284946      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6840 -37400   6400 
#> initial  value 998.131940 
#> iter   2 value 835.178170
#> iter   3 value 827.635495
#> iter   4 value 827.446241
#> iter   5 value 786.873888
#> iter   6 value 778.675208
#> iter   7 value 777.085423
#> iter   8 value 777.049741
#> iter   9 value 777.049650
#> iter  10 value 777.049634
#> iter  10 value 777.049625
#> iter  10 value 777.049616
#> final  value 777.049616 
#> converged
#> This is Run number  243 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2          U_1       U_2 CHOICE
#> 1     1  -0.55 -12.60 2.4805062  3.0838861   1.93050618 -9.516114      1
#> 2     1  -0.95  -2.35 1.0495383 -0.1520628   0.09953833 -2.502063      1
#> 3     1  -6.20  -2.30 1.9789513 -0.7203178  -4.22104871 -3.020318      2
#> 4     1 -13.90  -2.55 0.8635060  0.1326368 -13.03649397 -2.417363      2
#> 5     1 -14.40  -5.80 0.2057064  2.3673315 -14.19429357 -3.432668      2
#> 6     1  -3.60  -1.70 0.3295832 -0.4042369  -3.27041683 -2.104237      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6400 -38850   6225 
#> initial  value 998.131940 
#> iter   2 value 815.947555
#> iter   3 value 804.900656
#> iter   4 value 802.724024
#> iter   5 value 766.852562
#> iter   6 value 758.269569
#> iter   7 value 756.768084
#> iter   8 value 756.732173
#> iter   9 value 756.732095
#> iter   9 value 756.732084
#> iter   9 value 756.732078
#> final  value 756.732078 
#> converged
#> This is Run number  244 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2          e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.655043227  1.22161720   0.1050432 -11.3783828      1
#> 2     1  -0.95  -2.35 -0.002454318 -0.24362416  -0.9524543  -2.5936242      1
#> 3     1  -6.20  -2.30 -1.006912432 -0.09113768  -7.2069124  -2.3911377      2
#> 4     1 -13.90  -2.55 -0.549814037  3.38010125 -14.4498140   0.8301013      2
#> 5     1 -14.40  -5.80  1.731383699  1.19105735 -12.6686163  -4.6089427      2
#> 6     1  -3.60  -1.70 -0.477807517  1.59538957  -4.0778075  -0.1046104      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6120 -38175   7600 
#> initial  value 998.131940 
#> iter   2 value 818.360246
#> iter   3 value 804.983630
#> iter   4 value 803.822680
#> iter   5 value 765.866144
#> iter   6 value 757.446109
#> iter   7 value 756.170251
#> iter   8 value 756.146611
#> iter   9 value 756.146580
#> iter   9 value 756.146569
#> iter   9 value 756.146563
#> final  value 756.146563 
#> converged
#> This is Run number  245 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.8445037  0.4627549   2.294504 -12.1372451      1
#> 2     1  -0.95  -2.35 -0.1232785  0.0791009  -1.073279  -2.2708991      1
#> 3     1  -6.20  -2.30  0.5272793 -1.0085839  -5.672721  -3.3085839      2
#> 4     1 -13.90  -2.55  1.9527666 -0.9632221 -11.947233  -3.5132221      2
#> 5     1 -14.40  -5.80  0.9935716  2.0774481 -13.406428  -3.7225519      2
#> 6     1  -3.60  -1.70  1.8113113  1.1359141  -1.788689  -0.5640859      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5860 -36750   6000 
#> initial  value 998.131940 
#> iter   2 value 846.554042
#> iter   3 value 837.205108
#> iter   4 value 835.097604
#> iter   5 value 793.376229
#> iter   6 value 785.348486
#> iter   7 value 783.819987
#> iter   8 value 783.788448
#> iter   9 value 783.788381
#> iter   9 value 783.788372
#> iter   9 value 783.788368
#> final  value 783.788368 
#> converged
#> This is Run number  246 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.1947171  1.2179700   1.6447171 -11.3820300      1
#> 2     1  -0.95  -2.35  1.2186088  1.7841259   0.2686088  -0.5658741      1
#> 3     1  -6.20  -2.30  1.4122247  0.9045920  -4.7877753  -1.3954080      2
#> 4     1 -13.90  -2.55  0.1791404 -0.5492948 -13.7208596  -3.0992948      2
#> 5     1 -14.40  -5.80  1.6302392  1.9455393 -12.7697608  -3.8544607      2
#> 6     1  -3.60  -1.70 -0.9766555  0.2611104  -4.5766555  -1.4388896      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -38300   6525 
#> initial  value 998.131940 
#> iter   2 value 822.181386
#> iter   3 value 812.747373
#> iter   4 value 811.998231
#> iter   5 value 774.108233
#> iter   6 value 765.647492
#> iter   7 value 764.133339
#> iter   8 value 764.098441
#> iter   9 value 764.098363
#> iter  10 value 764.098348
#> iter  10 value 764.098338
#> iter  10 value 764.098333
#> final  value 764.098333 
#> converged
#> This is Run number  247 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.2088165  0.5931075   0.6588165 -12.006892      1
#> 2     1  -0.95  -2.35  0.4808139 -1.0211328  -0.4691861  -3.371133      1
#> 3     1  -6.20  -2.30  3.5088141  0.4158355  -2.6911859  -1.884164      2
#> 4     1 -13.90  -2.55  0.8408609 -0.0235867 -13.0591391  -2.573587      2
#> 5     1 -14.40  -5.80 -0.5046380 -0.7710901 -14.9046380  -6.571090      2
#> 6     1  -3.60  -1.70  2.1141948 -0.7719867  -1.4858052  -2.471987      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6180 -38200   6125 
#> initial  value 998.131940 
#> iter   2 value 825.987177
#> iter   3 value 815.241085
#> iter   4 value 812.885430
#> iter   5 value 775.191752
#> iter   6 value 766.746118
#> iter   7 value 765.214787
#> iter   8 value 765.179433
#> iter   9 value 765.179354
#> iter   9 value 765.179343
#> iter   9 value 765.179338
#> final  value 765.179338 
#> converged
#> This is Run number  248 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.02810859 -0.61540022  -0.5218914 -13.2154002      1
#> 2     1  -0.95  -2.35 -1.27613975  0.54502206  -2.2261397  -1.8049779      2
#> 3     1  -6.20  -2.30  0.14504544  0.40146568  -6.0549546  -1.8985343      2
#> 4     1 -13.90  -2.55  2.08761878  0.05451075 -11.8123812  -2.4954893      2
#> 5     1 -14.40  -5.80  1.33323333  0.58618945 -13.0667667  -5.2138106      2
#> 6     1  -3.60  -1.70  0.42835266  2.52480226  -3.1716473   0.8248023      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6680 -40875   6800 
#> initial  value 998.131940 
#> iter   2 value 781.280346
#> iter   3 value 766.563653
#> iter   4 value 763.997399
#> iter   5 value 734.433159
#> iter   6 value 725.700456
#> iter   7 value 724.523136
#> iter   8 value 724.496845
#> iter   9 value 724.496813
#> iter   9 value 724.496812
#> iter   9 value 724.496812
#> final  value 724.496812 
#> converged
#> This is Run number  249 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.6333742 -0.7362471  -2.1833742 -13.3362471      1
#> 2     1  -0.95  -2.35 -0.7205674  0.5910431  -1.6705674  -1.7589569      1
#> 3     1  -6.20  -2.30  0.4194497  3.6669410  -5.7805503   1.3669410      2
#> 4     1 -13.90  -2.55  0.8342635  2.3644905 -13.0657365  -0.1855095      2
#> 5     1 -14.40  -5.80 -0.4914265  0.7035326 -14.8914265  -5.0964674      2
#> 6     1  -3.60  -1.70  4.4156025  1.8720871   0.8156025   0.1720871      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6200 -36725   6500 
#> initial  value 998.131940 
#> iter   2 value 844.266208
#> iter   3 value 835.862053
#> iter   4 value 834.980809
#> iter   5 value 792.810447
#> iter   6 value 784.796024
#> iter   7 value 783.312871
#> iter   8 value 783.282686
#> iter   9 value 783.282623
#> iter   9 value 783.282619
#> iter   9 value 783.282619
#> final  value 783.282619 
#> converged
#> This is Run number  250 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.7381788  1.5872388   1.188179 -11.0127612      1
#> 2     1  -0.95  -2.35 -0.7568609  2.6698661  -1.706861   0.3198661      2
#> 3     1  -6.20  -2.30  2.1164821  0.8411596  -4.083518  -1.4588404      2
#> 4     1 -13.90  -2.55  0.3853132  1.0538036 -13.514687  -1.4961964      2
#> 5     1 -14.40  -5.80  0.5614486 -0.2464262 -13.838551  -6.0464262      2
#> 6     1  -3.60  -1.70 -0.2661704  0.8739728  -3.866170  -0.8260272      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5760 -36625   6350 
#> initial  value 998.131940 
#> iter   2 value 846.527470
#> iter   3 value 836.680841
#> iter   4 value 834.681412
#> iter   5 value 792.580035
#> iter   6 value 784.580769
#> iter   7 value 783.124309
#> iter   8 value 783.095515
#> iter   9 value 783.095462
#> iter   9 value 783.095461
#> iter   9 value 783.095461
#> final  value 783.095461 
#> converged
#> This is Run number  251 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.1561369  0.7081376  -1.7061369 -11.8918624      1
#> 2     1  -0.95  -2.35  1.4298268  5.7933276   0.4798268   3.4433276      2
#> 3     1  -6.20  -2.30  2.3851884 -0.8059106  -3.8148116  -3.1059106      2
#> 4     1 -13.90  -2.55 -0.8106951  1.2064598 -14.7106951  -1.3435402      2
#> 5     1 -14.40  -5.80 -0.8619319  1.3703933 -15.2619319  -4.4296067      2
#> 6     1  -3.60  -1.70  0.4952075  2.3965973  -3.1047925   0.6965973      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -38150   6675 
#> initial  value 998.131940 
#> iter   2 value 823.951017
#> iter   3 value 812.417941
#> iter   4 value 810.512955
#> iter   5 value 772.582669
#> iter   6 value 764.152880
#> iter   7 value 762.728128
#> iter   8 value 762.697398
#> iter   9 value 762.697342
#> iter   9 value 762.697342
#> iter   9 value 762.697342
#> final  value 762.697342 
#> converged
#> This is Run number  252 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  2.5596742  0.55386934   2.009674 -12.0461307      1
#> 2     1  -0.95  -2.35 -0.2015699  2.93604776  -1.151570   0.5860478      2
#> 3     1  -6.20  -2.30 -0.1707201 -0.07179202  -6.370720  -2.3717920      2
#> 4     1 -13.90  -2.55 -0.1397897  0.04092373 -14.039790  -2.5090763      2
#> 5     1 -14.40  -5.80 -0.3211993  2.73792648 -14.721199  -3.0620735      2
#> 6     1  -3.60  -1.70  0.3891829  1.58555717  -3.210817  -0.1144428      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6180 -39125   6675 
#> initial  value 998.131940 
#> iter   2 value 809.707936
#> iter   3 value 796.307177
#> iter   4 value 793.614386
#> iter   5 value 758.761945
#> iter   6 value 750.140558
#> iter   7 value 748.781748
#> iter   8 value 748.751536
#> iter   9 value 748.751486
#> iter   9 value 748.751477
#> iter   9 value 748.751472
#> final  value 748.751472 
#> converged
#> This is Run number  253 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1          e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.6197171  0.999364053  -1.169717 -11.600636      1
#> 2     1  -0.95  -2.35  1.1803660  0.557361371   0.230366  -1.792639      1
#> 3     1  -6.20  -2.30  2.7702375 -0.938393045  -3.429762  -3.238393      2
#> 4     1 -13.90  -2.55 -1.0333665  0.000621511 -14.933366  -2.549378      2
#> 5     1 -14.40  -5.80  5.6772584  0.337473267  -8.722742  -5.462527      2
#> 6     1  -3.60  -1.70  0.7180809 -1.523482153  -2.881919  -3.223482      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6700 -40025   7325 
#> initial  value 998.131940 
#> iter   2 value 791.919262
#> iter   3 value 777.766786
#> iter   4 value 776.609688
#> iter   5 value 744.145843
#> iter   6 value 735.460709
#> iter   7 value 734.252548
#> iter   8 value 734.227952
#> iter   9 value 734.227923
#> iter   9 value 734.227913
#> iter   9 value 734.227906
#> final  value 734.227906 
#> converged
#> This is Run number  254 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  4.1904158  2.59241227   3.6404158 -10.0075877      1
#> 2     1  -0.95  -2.35  0.6318071  2.14138571  -0.3181929  -0.2086143      2
#> 3     1  -6.20  -2.30 -0.4486886  0.32046953  -6.6486886  -1.9795305      2
#> 4     1 -13.90  -2.55  3.4114280  0.03430246 -10.4885720  -2.5156975      2
#> 5     1 -14.40  -5.80 -0.7089325  2.62019631 -15.1089325  -3.1798037      2
#> 6     1  -3.60  -1.70  6.6011162 -0.72163302   3.0011162  -2.4216330      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -38750   7500 
#> initial  value 998.131940 
#> iter   2 value 810.634163
#> iter   3 value 796.418401
#> iter   4 value 794.857008
#> iter   5 value 758.707181
#> iter   6 value 750.192886
#> iter   7 value 748.934718
#> iter   8 value 748.910741
#> iter   9 value 748.910713
#> iter   9 value 748.910703
#> iter   9 value 748.910696
#> final  value 748.910696 
#> converged
#> This is Run number  255 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2       e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 0.4402523 -0.9887353  -0.1097477 -13.5887353      1
#> 2     1  -0.95  -2.35 1.5494531  2.8822533   0.5994531   0.5322533      1
#> 3     1  -6.20  -2.30 0.7975385 -0.4613180  -5.4024615  -2.7613180      2
#> 4     1 -13.90  -2.55 0.8567760 -0.9043923 -13.0432240  -3.4543923      2
#> 5     1 -14.40  -5.80 0.2642116 -0.6270664 -14.1357884  -6.4270664      2
#> 6     1  -3.60  -1.70 0.4927658  1.8388325  -3.1072342   0.1388325      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6660 -39125   6500 
#> initial  value 998.131940 
#> iter   2 value 810.270795
#> iter   3 value 799.443926
#> iter   4 value 798.081893
#> iter   5 value 762.782520
#> iter   6 value 754.152172
#> iter   7 value 752.695273
#> iter   8 value 752.660657
#> iter   9 value 752.660586
#> iter  10 value 752.660574
#> iter  10 value 752.660567
#> iter  10 value 752.660561
#> final  value 752.660561 
#> converged
#> This is Run number  256 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2436453  1.18896074  -0.7936453 -11.411039      1
#> 2     1  -0.95  -2.35  2.2454091 -0.11922326   1.2954091  -2.469223      1
#> 3     1  -6.20  -2.30 -0.2637810  0.42521340  -6.4637810  -1.874787      2
#> 4     1 -13.90  -2.55 -0.5819784  2.42218098 -14.4819784  -0.127819      2
#> 5     1 -14.40  -5.80  4.0508737 -0.01946365 -10.3491263  -5.819464      2
#> 6     1  -3.60  -1.70  1.3757228  2.77810478  -2.2242772   1.078105      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6100 -40625   8150 
#> initial  value 998.131940 
#> iter   2 value 777.662101
#> iter   3 value 757.006316
#> iter   4 value 754.138877
#> iter   5 value 724.325319
#> iter   6 value 715.943653
#> iter   7 value 714.935922
#> iter   8 value 714.920615
#> iter   9 value 714.920604
#> iter   9 value 714.920598
#> iter   9 value 714.920598
#> final  value 714.920598 
#> converged
#> This is Run number  257 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 1.27071338 -0.3540568   0.7207134 -12.9540568      1
#> 2     1  -0.95  -2.35 0.07494138  0.4708555  -0.8750586  -1.8791445      1
#> 3     1  -6.20  -2.30 1.49787382  1.5970045  -4.7021262  -0.7029955      2
#> 4     1 -13.90  -2.55 0.04792892 -0.3201371 -13.8520711  -2.8701371      2
#> 5     1 -14.40  -5.80 0.50897854  0.7292844 -13.8910215  -5.0707156      2
#> 6     1  -3.60  -1.70 0.36966777 -0.3580409  -3.2303322  -2.0580409      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7040 -39325   6300 
#> initial  value 998.131940 
#> iter   2 value 807.854068
#> iter   3 value 798.454167
#> iter   4 value 797.719068
#> iter   5 value 762.759881
#> iter   6 value 754.095581
#> iter   7 value 752.556624
#> iter   8 value 752.517842
#> iter   9 value 752.517749
#> iter  10 value 752.517734
#> iter  10 value 752.517727
#> iter  10 value 752.517720
#> final  value 752.517720 
#> converged
#> This is Run number  258 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.33196803  2.0588522  -0.2180320 -10.541148      1
#> 2     1  -0.95  -2.35  0.12840013 -0.2039175  -0.8215999  -2.553917      1
#> 3     1  -6.20  -2.30 -0.08936058  0.1248208  -6.2893606  -2.175179      2
#> 4     1 -13.90  -2.55  0.89975357  0.4167752 -13.0002464  -2.133225      2
#> 5     1 -14.40  -5.80 -0.44046379 -0.2346377 -14.8404638  -6.034638      2
#> 6     1  -3.60  -1.70  0.52815807  0.3637958  -3.0718419  -1.336204      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6040 -38150   6875 
#> initial  value 998.131940 
#> iter   2 value 822.927788
#> iter   3 value 810.617600
#> iter   4 value 808.600803
#> iter   5 value 770.726039
#> iter   6 value 762.298998
#> iter   7 value 760.918630
#> iter   8 value 760.889857
#> iter   9 value 760.889811
#> iter   9 value 760.889800
#> iter   9 value 760.889794
#> final  value 760.889794 
#> converged
#> This is Run number  259 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.8780564  2.20764333  -1.428056 -10.392357      1
#> 2     1  -0.95  -2.35  1.4397950 -1.50001471   0.489795  -3.850015      1
#> 3     1  -6.20  -2.30 -0.2169486 -0.91174839  -6.416949  -3.211748      2
#> 4     1 -13.90  -2.55 -0.1822472 -0.09998267 -14.082247  -2.649983      2
#> 5     1 -14.40  -5.80  0.6001515 -0.08210979 -13.799849  -5.882110      2
#> 6     1  -3.60  -1.70  1.7128590 -1.49172820  -1.887141  -3.191728      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6480 -40025   7825 
#> initial  value 998.131940 
#> iter   2 value 789.078234
#> iter   3 value 772.664622
#> iter   4 value 771.347166
#> iter   5 value 739.089936
#> iter   6 value 730.502929
#> iter   7 value 729.385127
#> iter   8 value 729.365821
#> iter   9 value 729.365800
#> iter   9 value 729.365792
#> iter   9 value 729.365786
#> final  value 729.365786 
#> converged
#> This is Run number  260 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.2026689 -0.2758724   0.6526689 -12.8758724      1
#> 2     1  -0.95  -2.35 -1.5887154  3.0894023  -2.5387154   0.7394023      2
#> 3     1  -6.20  -2.30  1.0129490 -0.3665425  -5.1870510  -2.6665425      2
#> 4     1 -13.90  -2.55  2.8700788  0.7383350 -11.0299212  -1.8116650      2
#> 5     1 -14.40  -5.80  3.1028744 -0.5085462 -11.2971256  -6.3085462      2
#> 6     1  -3.60  -1.70  0.0027649  0.4068498  -3.5972351  -1.2931502      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5680 -37750   7200 
#> initial  value 998.131940 
#> iter   2 value 826.843666
#> iter   3 value 813.126525
#> iter   4 value 810.641819
#> iter   5 value 771.784682
#> iter   6 value 763.460592
#> iter   7 value 762.142673
#> iter   8 value 762.117632
#> iter   9 value 762.117600
#> iter   9 value 762.117590
#> iter   9 value 762.117585
#> final  value 762.117585 
#> converged
#> This is Run number  261 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.03938052  1.1927672  -0.5893805 -11.4072328      1
#> 2     1  -0.95  -2.35  3.13432496  0.2028294   2.1843250  -2.1471706      1
#> 3     1  -6.20  -2.30 -0.42791980  0.1915672  -6.6279198  -2.1084328      2
#> 4     1 -13.90  -2.55  2.85895386 -0.5962267 -11.0410461  -3.1462267      2
#> 5     1 -14.40  -5.80 -0.93648301 -1.1104720 -15.3364830  -6.9104720      2
#> 6     1  -3.60  -1.70  0.08913710  1.0899383  -3.5108629  -0.6100617      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5360 -37550   7425 
#> initial  value 998.131940 
#> iter   2 value 828.307070
#> iter   3 value 812.975935
#> iter   4 value 809.816103
#> iter   5 value 770.574733
#> iter   6 value 762.307716
#> iter   7 value 761.032284
#> iter   8 value 761.009774
#> iter   9 value 761.009751
#> iter   9 value 761.009742
#> iter   9 value 761.009738
#> final  value 761.009738 
#> converged
#> This is Run number  262 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1          U_2 CHOICE
#> 1     1  -0.55 -12.60  0.1425067 -1.4406223  -0.4074933 -14.04062235      1
#> 2     1  -0.95  -2.35  0.1678418  1.3499121  -0.7821582  -1.00008795      1
#> 3     1  -6.20  -2.30 -0.1230280 -0.6759555  -6.3230280  -2.97595551      2
#> 4     1 -13.90  -2.55  2.4721228  2.4826997 -11.4278772  -0.06730028      2
#> 5     1 -14.40  -5.80  0.5183590 -0.4281362 -13.8816410  -6.22813621      2
#> 6     1  -3.60  -1.70 -0.4999486  1.1265143  -4.0999486  -0.57348566      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -38925   7800 
#> initial  value 998.131940 
#> iter   2 value 806.010915
#> iter   3 value 791.830837
#> iter   4 value 791.153079
#> iter   5 value 755.342687
#> iter   6 value 746.791024
#> iter   7 value 745.574160
#> iter   8 value 745.552279
#> iter   8 value 745.552272
#> final  value 745.552272 
#> converged
#> This is Run number  263 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2          U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.6377269 -0.50416279   0.08772691 -13.104163      1
#> 2     1  -0.95  -2.35 -0.5738979 -0.01040989  -1.52389790  -2.360410      1
#> 3     1  -6.20  -2.30  1.0005281 -0.16308516  -5.19947187  -2.463085      2
#> 4     1 -13.90  -2.55  0.7276166  0.29187939 -13.17238336  -2.258121      2
#> 5     1 -14.40  -5.80  2.3134102  3.51299710 -12.08658979  -2.287003      2
#> 6     1  -3.60  -1.70  1.7366259 -0.12815988  -1.86337412  -1.828160      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   5920 -37100   6550 
#> initial  value 998.131940 
#> iter   2 value 839.187781
#> iter   3 value 828.928431
#> iter   4 value 827.146195
#> iter   5 value 786.245981
#> iter   6 value 778.098462
#> iter   7 value 776.651350
#> iter   8 value 776.621914
#> iter   9 value 776.621860
#> iter   9 value 776.621858
#> iter   9 value 776.621858
#> final  value 776.621858 
#> converged
#> This is Run number  264 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.6209664  0.6631102   0.07096643 -11.9368898      1
#> 2     1  -0.95  -2.35  0.8757897 -1.5785130  -0.07421032  -3.9285130      1
#> 3     1  -6.20  -2.30 -0.5101587  3.4580951  -6.71015870   1.1580951      2
#> 4     1 -13.90  -2.55 -0.2240903  0.8752780 -14.12409029  -1.6747220      2
#> 5     1 -14.40  -5.80  0.9276813  3.3713160 -13.47231873  -2.4286840      2
#> 6     1  -3.60  -1.70 -0.1044358  1.1091605  -3.70443581  -0.5908395      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6020 -37825   7100 
#> initial  value 998.131940 
#> iter   2 value 826.266903
#> iter   3 value 814.185859
#> iter   4 value 812.588821
#> iter   5 value 773.680367
#> iter   6 value 765.331249
#> iter   7 value 763.973071
#> iter   8 value 763.945951
#> iter   9 value 763.945909
#> iter  10 value 763.945897
#> iter  10 value 763.945887
#> iter  10 value 763.945885
#> final  value 763.945885 
#> converged
#> This is Run number  265 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1         e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.2552601 -0.08744323  -0.8052601 -12.687443      1
#> 2     1  -0.95  -2.35 -0.8589044  1.28768019  -1.8089044  -1.062320      2
#> 3     1  -6.20  -2.30  0.9168319  0.22914383  -5.2831681  -2.070856      2
#> 4     1 -13.90  -2.55  0.5863428  0.47770852 -13.3136572  -2.072291      2
#> 5     1 -14.40  -5.80 -1.8810551 -0.27699357 -16.2810551  -6.076994      2
#> 6     1  -3.60  -1.70  2.2326590 -0.95832001  -1.3673410  -2.658320      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -38000   7000 
#> initial  value 998.131940 
#> iter   2 value 824.199771
#> iter   3 value 813.149956
#> iter   4 value 812.129540
#> iter   5 value 773.535088
#> iter   6 value 765.136071
#> iter   7 value 763.739798
#> iter   8 value 763.710586
#> iter   9 value 763.710534
#> iter  10 value 763.710520
#> iter  10 value 763.710509
#> iter  10 value 763.710507
#> final  value 763.710507 
#> converged
#> This is Run number  266 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2           U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.5521719  2.1162354   0.002171926 -10.483765      1
#> 2     1  -0.95  -2.35  0.9513936 -0.7059960   0.001393558  -3.055996      1
#> 3     1  -6.20  -2.30  1.0143771  1.0757955  -5.185622869  -1.224204      2
#> 4     1 -13.90  -2.55  1.4865684 -0.3557861 -12.413431599  -2.905786      2
#> 5     1 -14.40  -5.80  0.3326057  0.8715644 -14.067394292  -4.928436      2
#> 6     1  -3.60  -1.70 -0.5109481  0.1392917  -4.110948112  -1.560708      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6160 -37575   7950 
#> initial  value 998.131940 
#> iter   2 value 824.547919
#> iter   3 value 811.706234
#> iter   4 value 811.198739
#> iter   5 value 771.355225
#> iter   6 value 763.040429
#> iter   7 value 761.793135
#> iter   8 value 761.772096
#> iter   8 value 761.772095
#> final  value 761.772095 
#> converged
#> This is Run number  267 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2          U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  3.6418425  1.1239771   3.09184245 -11.4760229      1
#> 2     1  -0.95  -2.35  0.9290501 -0.5259110  -0.02094991  -2.8759110      1
#> 3     1  -6.20  -2.30  1.8655929  1.3855948  -4.33440705  -0.9144052      2
#> 4     1 -13.90  -2.55  0.6335735  4.4043032 -13.26642652   1.8543032      2
#> 5     1 -14.40  -5.80  1.3032937  0.4693574 -13.09670632  -5.3306426      2
#> 6     1  -3.60  -1.70 -1.5845678  3.6242659  -5.18456785   1.9242659      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   7080 -38775   6875 
#> initial  value 998.131940 
#> iter   2 value 812.963624
#> iter   3 value 803.078116
#> iter   4 value 802.940144
#> iter   5 value 766.323858
#> iter   6 value 757.748867
#> iter   7 value 756.287536
#> iter   8 value 756.253636
#> iter   9 value 756.253561
#> iter  10 value 756.253542
#> iter  10 value 756.253533
#> iter  10 value 756.253525
#> final  value 756.253525 
#> converged
#> This is Run number  268 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.85863948 -0.4506675   1.3086395 -13.050668      1
#> 2     1  -0.95  -2.35  0.04596431 -1.5868603  -0.9040357  -3.936860      1
#> 3     1  -6.20  -2.30 -1.23894270  0.2192232  -7.4389427  -2.080777      2
#> 4     1 -13.90  -2.55 -1.77185545 -0.4983418 -15.6718554  -3.048342      2
#> 5     1 -14.40  -5.80 -0.40853453  0.2119774 -14.8085345  -5.588023      2
#> 6     1  -3.60  -1.70  0.50957777 -0.4919903  -3.0904222  -2.191990      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6840 -39725   5950 
#> initial  value 998.131940 
#> iter   2 value 803.676913
#> iter   3 value 793.477023
#> iter   4 value 791.586709
#> iter   5 value 758.173955
#> iter   6 value 749.450544
#> iter   7 value 747.901674
#> iter   8 value 747.860808
#> iter   9 value 747.860704
#> iter  10 value 747.860691
#> iter  10 value 747.860691
#> iter  10 value 747.860685
#> final  value 747.860685 
#> converged
#> This is Run number  269 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.7718741 -0.3199869   0.2218741 -12.9199869      1
#> 2     1  -0.95  -2.35 -0.3593836 -0.6087115  -1.3093836  -2.9587115      1
#> 3     1  -6.20  -2.30 -0.2082694  0.4688898  -6.4082694  -1.8311102      2
#> 4     1 -13.90  -2.55  1.1035857  0.4758437 -12.7964143  -2.0741563      2
#> 5     1 -14.40  -5.80  1.2532171  2.1069011 -13.1467829  -3.6930989      2
#> 6     1  -3.60  -1.70  0.1925566  1.2763763  -3.4074434  -0.4236237      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6400 -38225   6325 
#> initial  value 998.131940 
#> iter   2 value 824.513406
#> iter   3 value 814.505051
#> iter   4 value 812.957506
#> iter   5 value 775.096424
#> iter   6 value 766.656763
#> iter   7 value 765.137024
#> iter   8 value 765.102162
#> iter   9 value 765.102086
#> iter  10 value 765.102074
#> iter  10 value 765.102068
#> iter  10 value 765.102064
#> final  value 765.102064 
#> converged
#> This is Run number  270 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  1.60425824  0.3128764   1.0542582 -12.287124      1
#> 2     1  -0.95  -2.35  0.07235627  3.5707550  -0.8776437   1.220755      2
#> 3     1  -6.20  -2.30  0.96356455 -0.1455178  -5.2364354  -2.445518      2
#> 4     1 -13.90  -2.55  1.17866977  0.7324385 -12.7213302  -1.817561      2
#> 5     1 -14.40  -5.80  0.68413629  0.6136341 -13.7158637  -5.186366      2
#> 6     1  -3.60  -1.70 -0.25629799 -0.1790901  -3.8562980  -1.879090      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6320 -38800   6125 
#> initial  value 998.131940 
#> iter   2 value 817.221522
#> iter   3 value 805.990434
#> iter   4 value 803.505758
#> iter   5 value 767.572377
#> iter   6 value 758.993323
#> iter   7 value 757.478627
#> iter   8 value 757.442193
#> iter   9 value 757.442111
#> iter   9 value 757.442100
#> iter   9 value 757.442094
#> final  value 757.442094 
#> converged
#> This is Run number  271 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  1.3979533 -0.3033646   0.8479533 -12.9033646      1
#> 2     1  -0.95  -2.35  1.2403548 -0.1480009   0.2903548  -2.4980009      1
#> 3     1  -6.20  -2.30  0.0979576 -0.4825124  -6.1020424  -2.7825124      2
#> 4     1 -13.90  -2.55 -0.5131946  2.7826686 -14.4131946   0.2326686      2
#> 5     1 -14.40  -5.80  1.4826828  0.8766343 -12.9173172  -4.9233657      2
#> 6     1  -3.60  -1.70  0.7357638  1.2998386  -2.8642362  -0.4001614      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6140 -38450   7975 
#> initial  value 998.131940 
#> iter   2 value 812.070245
#> iter   3 value 797.297561
#> iter   4 value 796.294107
#> iter   5 value 759.173788
#> iter   6 value 750.725941
#> iter   7 value 749.518966
#> iter   8 value 749.498661
#> iter   9 value 749.498644
#> iter   9 value 749.498641
#> iter  10 value 749.498626
#> iter  10 value 749.498616
#> iter  10 value 749.498614
#> final  value 749.498614 
#> converged
#> This is Run number  272 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60  0.2048856  0.7941502  -0.3451144 -11.8058498      1
#> 2     1  -0.95  -2.35  1.4538246  1.3645683   0.5038246  -0.9854317      1
#> 3     1  -6.20  -2.30  1.7738528  0.3578582  -4.4261472  -1.9421418      2
#> 4     1 -13.90  -2.55  1.4193496  2.0273056 -12.4806504  -0.5226944      2
#> 5     1 -14.40  -5.80 -0.4247481  3.9689190 -14.8247481  -1.8310810      2
#> 6     1  -3.60  -1.70  4.8461607 -0.4444106   1.2461607  -2.1444106      1
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -38625   7300 
#> initial  value 998.131940 
#> iter   2 value 813.436569
#> iter   3 value 801.091505
#> iter   4 value 800.236617
#> iter   5 value 763.462989
#> iter   6 value 754.932131
#> iter   7 value 753.609375
#> iter   8 value 753.582383
#> iter   9 value 753.582341
#> iter  10 value 753.582327
#> iter  10 value 753.582318
#> iter  10 value 753.582311
#> final  value 753.582311 
#> converged
#> This is Run number  273 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2        e_1        e_2        U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60 -1.2631006 -0.4689069  -1.813101 -13.068907      1
#> 2     1  -0.95  -2.35 -1.1052696  0.4636591  -2.055270  -1.886341      2
#> 3     1  -6.20  -2.30 -0.4097308 -0.2536360  -6.609731  -2.553636      2
#> 4     1 -13.90  -2.55 -0.7447861  4.4598698 -14.644786   1.909870      2
#> 5     1 -14.40  -5.80  2.4652082 -0.6402120 -11.934792  -6.440212      2
#> 6     1  -3.60  -1.70 -0.9450787 -0.2502349  -4.545079  -1.950235      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6580 -36225   6400 
#> initial  value 998.131940 
#> iter   2 value 850.892455
#> iter   3 value 844.306361
#> iter   4 value 844.158057
#> iter   5 value 800.508369
#> iter   6 value 792.693377
#> iter   7 value 791.161015
#> iter   8 value 791.129950
#> iter   9 value 791.129874
#> iter   9 value 791.129871
#> iter   9 value 791.129871
#> final  value 791.129871 
#> converged
#> This is Run number  274 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1         U_2 CHOICE
#> 1     1  -0.55 -12.60 -0.77612950 -0.3865490  -1.3261295 -12.9865490      1
#> 2     1  -0.95  -2.35  0.05689359  0.3934569  -0.8931064  -1.9565431      1
#> 3     1  -6.20  -2.30  0.70066342 -0.8065447  -5.4993366  -3.1065447      2
#> 4     1 -13.90  -2.55 -0.86424704 -1.6095553 -14.7642470  -4.1595553      2
#> 5     1 -14.40  -5.80  1.63653758  1.2759479 -12.7634624  -4.5240521      2
#> 6     1  -3.60  -1.70  1.39532466  2.5278723  -2.2046753   0.8278723      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6460 -39600   7900 
#> initial  value 998.131940 
#> iter   2 value 795.211057
#> iter   3 value 779.397964
#> iter   4 value 778.392022
#> iter   5 value 744.756702
#> iter   6 value 736.178833
#> iter   7 value 735.032101
#> iter   8 value 735.012473
#> iter   9 value 735.012451
#> iter   9 value 735.012444
#> iter   9 value 735.012435
#> final  value 735.012435 
#> converged
#> This is Run number  275 
#>  does sou_gis exist:  FALSE 
#> 
#>  dataset final_set exists:  FALSE 
#> 
#>  decisiongroups exists:  TRUE
#>    1    2 
#> 1007  433 
#> 
#>  data has been created 
#> 
#>  First few observations of the dataset 
#>    ID Choice_situation alt1_x1 alt1_x2 alt1_x3 alt2_x1 alt2_x2 alt2_x3 Block
#> 1  1                7      80      25     100      60     200     100     1
#> 2  1               19      20      25      50      60      25       0     1
#> 3  1               30      20     100      50      80      50     100     1
#> 4  1               32      40     200      25      80      25       0     1
#> 5  1               39      40     200       0      80     100     100     1
#> 6  1               48      60      50      25      20      50     100     1
#>   group    V_1    V_2         e_1        e_2         U_1        U_2 CHOICE
#> 1     1  -0.55 -12.60  0.16437206  2.3694129  -0.3856279 -10.230587      1
#> 2     1  -0.95  -2.35  0.07988825 -0.3717487  -0.8701117  -2.721749      1
#> 3     1  -6.20  -2.30  0.26699233 -0.4774439  -5.9330077  -2.777444      2
#> 4     1 -13.90  -2.55  1.86501522 -0.3565152 -12.0349848  -2.906515      2
#> 5     1 -14.40  -5.80 -1.77503947 -0.3541150 -16.1750395  -6.154115      2
#> 6     1  -3.60  -1.70 -1.63781093 -0.5333874  -5.2378109  -2.233387      2
#> 
#>  
#>  Initial function value: -998.1319 
#> Initial gradient value:
#> bpreis  blade bwarte 
#>   6940 -40675   8075 
#> initial  value 998.131940 
#> iter   2 value 776.661939
#> iter   3 value 759.798327
#> iter   4 value 759.358912
#> iter   5 value 728.963762
#> iter   6 value 720.395247
#> iter   7 value 719.362215
#> iter   8 value 719.346455
#> iter   9 value 719.34

About

The goal of simulateDCE is to make it easy to simulate choice experiment datasets using designs from NGENE, idefix or spdesign.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages