forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add LoRA fine-tuning Script for T5 XL/XXL (lm-sys#1926)
Co-authored-by: Divyanshu Aggarwal <[email protected]>
- Loading branch information
1 parent
62459e9
commit bd48130
Showing
3 changed files
with
264 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -20,6 +20,7 @@ dist | |
.DS_Store | ||
wandb | ||
output | ||
checkpoints_flant5_3b | ||
|
||
# Data | ||
*.pkl | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | ||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from collections import defaultdict | ||
import copy | ||
import os | ||
from dataclasses import dataclass, field | ||
import random | ||
import json | ||
import logging | ||
import pathlib | ||
from typing import Dict, Optional, Sequence, List | ||
|
||
import torch | ||
import torch.distributed as dist | ||
|
||
|
||
from deepspeed import zero | ||
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | ||
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType | ||
|
||
import transformers | ||
from torch.utils.data import Dataset | ||
from transformers import Trainer, AddedToken, BitsAndBytesConfig, deepspeed | ||
|
||
from fastchat.train.train_flant5 import ( | ||
smart_tokenizer_and_embedding_resize, | ||
make_supervised_data_module, | ||
) | ||
|
||
from fastchat.train.train_lora import get_peft_state_maybe_zero_3 | ||
|
||
from fastchat.model.model_adapter import get_conversation_template | ||
|
||
default_conversation = get_conversation_template("t5") | ||
|
||
# TODO: import and use code from ../data/dataset.py | ||
|
||
IGNORE_INDEX = -100 | ||
DEFAULT_PAD_TOKEN = "[PAD]" | ||
DEFAULT_EOS_TOKEN = "</s>" | ||
DEFAULT_BOS_TOKEN = "</s>" | ||
DEFAULT_UNK_TOKEN = "</s>" | ||
|
||
|
||
@dataclass | ||
class LoraArguments: | ||
lora_r: int = 8 | ||
lora_alpha: int = 16 | ||
lora_dropout: float = 0.05 | ||
lora_target_modules: List[str] = field(default_factory=lambda: ["q", "v"]) | ||
lora_weight_path: str = "" | ||
lora_bias: str = "none" | ||
q_lora: bool = False | ||
|
||
|
||
@dataclass | ||
class ModelArguments: | ||
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | ||
|
||
|
||
@dataclass | ||
class DataArguments: | ||
data_path: str = field( | ||
default=None, metadata={"help": "Path to the training data."} | ||
) | ||
lazy_preprocess: bool = False | ||
num_data: int = -1 | ||
preprocessed_path: str = field( | ||
default=None, metadata={"help": "Path to the preprocessed training data."} | ||
) | ||
|
||
|
||
@dataclass | ||
class TrainingArguments(transformers.TrainingArguments): | ||
cache_dir: Optional[str] = field(default=None) | ||
optim: str = field(default="adamw_torch") | ||
model_max_length: int = field( | ||
default=2048, | ||
metadata={ | ||
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | ||
}, | ||
) | ||
|
||
|
||
def safe_save_model_for_hf_trainer( | ||
trainer: transformers.Trainer, output_dir: str, state_dict: dict | ||
): | ||
"""Collects the state dict and dump to disk.""" | ||
|
||
if trainer.args.should_save: | ||
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | ||
del state_dict | ||
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | ||
|
||
|
||
def train(): | ||
parser = transformers.HfArgumentParser( | ||
(ModelArguments, DataArguments, TrainingArguments, LoraArguments) | ||
) | ||
( | ||
model_args, | ||
data_args, | ||
training_args, | ||
lora_args, | ||
) = parser.parse_args_into_dataclasses() | ||
|
||
device_map = None | ||
world_size = int(os.environ.get("WORLD_SIZE", 1)) | ||
ddp = world_size != 1 | ||
if lora_args.q_lora: | ||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None | ||
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled(): | ||
logging.warning( | ||
"FSDP and ZeRO3 are both currently incompatible with QLoRA." | ||
) | ||
|
||
compute_dtype = ( | ||
torch.float16 | ||
if training_args.fp16 | ||
else (torch.bfloat16 if training_args.bf16 else torch.float32) | ||
) | ||
|
||
model = transformers.AutoModelForSeq2SeqLM.from_pretrained( | ||
model_args.model_name_or_path, | ||
cache_dir=training_args.cache_dir, | ||
device_map=device_map, | ||
quantization_config=BitsAndBytesConfig( | ||
load_in_4bit=True, | ||
bnb_4bit_use_double_quant=True, | ||
bnb_4bit_quant_type="nf4", | ||
bnb_4bit_compute_dtype=compute_dtype, | ||
) | ||
if lora_args.q_lora | ||
else None, | ||
) | ||
|
||
lora_config = LoraConfig( | ||
r=lora_args.lora_r, | ||
lora_alpha=lora_args.lora_alpha, | ||
target_modules=lora_args.lora_target_modules, | ||
lora_dropout=lora_args.lora_dropout, | ||
bias=lora_args.lora_bias, | ||
task_type=TaskType.SEQ_2_SEQ_LM, | ||
) | ||
|
||
if lora_args.q_lora: | ||
model = prepare_model_for_kbit_training( | ||
model, use_gradient_checkpointing=training_args.gradient_checkpointing | ||
) | ||
if not ddp and torch.cuda.device_count() > 1: | ||
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available | ||
model.is_parallelizable = True | ||
model.model_parallel = True | ||
|
||
model = get_peft_model(model, lora_config) | ||
if training_args.deepspeed is not None and training_args.local_rank == 0: | ||
model.print_trainable_parameters() | ||
|
||
if training_args.gradient_checkpointing: | ||
model.enable_input_require_grads() | ||
|
||
# Dacheng: Note we can only use T5Tokenizer, otherwise it will prepend | ||
# a space before special tokens. | ||
tokenizer = transformers.T5Tokenizer.from_pretrained( | ||
model_args.model_name_or_path, | ||
cache_dir=training_args.cache_dir, | ||
model_max_length=training_args.model_max_length, | ||
padding_side="right", | ||
use_fast=False, | ||
) | ||
|
||
smart_tokenizer_and_embedding_resize( | ||
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), | ||
other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"], | ||
tokenizer=tokenizer, | ||
model=model, | ||
) | ||
|
||
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | ||
|
||
trainer = Trainer( | ||
model=model, tokenizer=tokenizer, args=training_args, **data_module | ||
) | ||
|
||
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | ||
trainer.train(resume_from_checkpoint=True) | ||
else: | ||
trainer.train() | ||
trainer.save_state() | ||
# check if zero3 mode enabled | ||
if deepspeed.is_deepspeed_zero3_enabled(): | ||
# use deepspeed engine internal function to gather state dict | ||
# state_dict_zero3 contains whole parameters of base and lora adapters | ||
# we will not extract lora parameters since peft save_pretrained will do that | ||
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/peft_model.py#L125 | ||
# https://github.com/huggingface/peft/blob/3714aa2fff158fdfa637b2b65952580801d890b2/src/peft/utils/save_and_load.py#L19 | ||
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() | ||
if training_args.local_rank == 0: | ||
state_dict = state_dict_zero3 | ||
else: | ||
# in other mode we use original code from fastchat team, to make sure our change is minimum | ||
state_dict = get_peft_state_maybe_zero_3( | ||
model.named_parameters(), lora_args.lora_bias | ||
) | ||
|
||
if training_args.local_rank == 0: | ||
safe_save_model_for_hf_trainer( | ||
trainer=trainer, output_dir=training_args.output_dir, state_dict=state_dict | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
train() |