Skip to content

Commit

Permalink
Merge pull request #2890 from rapidsai/branch-22.10
Browse files Browse the repository at this point in the history
[RELASE] cugraph v22.10.01
  • Loading branch information
raydouglass authored Nov 4, 2022
2 parents fad6af4 + 6bbdadf commit 92434ff
Show file tree
Hide file tree
Showing 10 changed files with 27 additions and 32 deletions.
25 changes: 10 additions & 15 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

[![Build Status](https://gpuci.gpuopenanalytics.com/job/rapidsai/job/gpuci/job/cugraph/job/branches/job/cugraph-branch-pipeline/badge/icon)](https://gpuci.gpuopenanalytics.com/job/rapidsai/job/gpuci/job/cugraph/job/branches/job/cugraph-branch-pipeline/)

The [RAPIDS](https://rapids.ai) cuGraph library is a collection of GPU accelerated graph algorithms that process data found in [GPU DataFrames](https://github.com/rapidsai/cudf). The vision of cuGraph is _to make graph analysis ubiquitous to the point that users just think in terms of analysis and not technologies or frameworks_. To realize that vision, cuGraph operates, at the Python layer, on GPU DataFrames, thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF. Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS.
The [RAPIDS](https://rapids.ai) cuGraph library is a collection of GPU accelerated graph algorithms that process data found in [GPU DataFrames](https://github.com/rapidsai/cudf). The vision of cuGraph is _to make graph analysis ubiquitous to the point that users just think in terms of analysis and not technologies or frameworks_. To realize that vision, cuGraph operates, at the Python layer, on GPU DataFrames, thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF. Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS.

While the high-level cugraph python API provides an easy-to-use and familiar interface for data scientists that's consistent with other RAPIDS libraries in their workflow, some use cases require access to lower-level graph theory concepts. For these users, we provide an additional Python API called pylibcugraph, intended for applications that require a tighter integration with cuGraph at the Python layer with fewer dependencies. Users familiar with C/C++/CUDA and graph structures can access libcugraph and libcugraph_c for low level integration outside of python.

Expand Down Expand Up @@ -43,13 +43,13 @@ There are 3 ways to get cuGraph :
# cuGraph News

### Scaling to 1 Trillion Edges
At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph.
At GTC Spring '22 we presented results of running cuGraph on the [Selene](https://top500.org/system/179842/) supercomputer using 2,048 GPUs and processing a graph with `1.1 Trillion edges`. Synthetic data created with the RMAT generator found in cuGraph.

<div align="left"><img src="img/Scaling.png" width="500px" style="background-color: white;"/>&nbsp;</br>cuGraph Scaling</div>
</br></br>

### cuGraph Software Stack
cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers.
cuGraph has a new multi-layer software stack that allows users and system integrators to access cuGraph at different layers.

<div align="left"><img src="img/cugraph-stack.png" width="500px" style="background-color: white;"/>&nbsp;</br>cuGraph Software Stack</div>
</br></br>
Expand Down Expand Up @@ -143,7 +143,7 @@ _Italic_ algorithms are planned for future releases.
| Other | | | |
| | Renumbering | <mark>Multi-GPU</mark> | multiple columns, any data type |
| | Symmetrize | <mark>Multi-GPU</mark> | |
| | Path Extraction | | Extract paths from BFS/SSP results in parallel |
| | Path Extraction | | Extract paths from BFS/SSP results in parallel |
| Data Generator | | | |
| | RMAT | <mark>Multi-GPU</mark> | |
| | _Barabasi-Albert_ | --- | |
Expand All @@ -154,7 +154,7 @@ _Italic_ algorithms are planned for future releases.

## cuGraph Notice

Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0.
Vertex IDs are expected to be contiguous integers starting from 0. If your data doesn't match that restriction, we have a solution. cuGraph provides the renumber function, which is by default automatically called when data is added to a graph. Input vertex IDs for the renumber function can be any type, can be non-contiguous, can be multiple columns, and can start from an arbitrary number. The renumber function maps the provided input vertex IDs to either 32- or 64-bit contiguous integers starting from 0.

Additionally, when using the auto-renumbering feature, vertices are automatically un-renumbered in results.

Expand Down Expand Up @@ -183,20 +183,15 @@ It is easy to install cuGraph using conda. You can get a minimal conda installat
Install and update cuGraph using the conda command:

```bash





# CUDA 11.4
conda install -c nvidia -c rapidsai -c numba -c conda-forge cugraph cudatoolkit=11.4

# CUDA 11.5
conda install -c nvidia -c rapidsai -c numba -c conda-forge cugraph cudatoolkit=11.5
conda install -c rapidsai -c numba -c conda-forge -c nvidia cugraph cudatoolkit=11.5

For CUDA > 11.5, please use the 11.5 environment
# CUDA 11.4
conda install -c rapidsai -c numba -c conda-forge -c nvidia cugraph cudatoolkit=11.4
```

For CUDA > 11.5, please use the 11.5 environment.

Note: This conda installation only applies to Linux and Python versions 3.8/3.9.


Expand Down
2 changes: 1 addition & 1 deletion ci/benchmark/build.sh
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ CUGRAPH_DEPS=(cudf rmm)
LIBCUGRAPH_DEPS=(cudf rmm)

gpuci_logger "Install required packages"
gpuci_mamba_retry install -c nvidia -c rapidsai -c rapidsai-nightly -c conda-forge \
gpuci_mamba_retry install -c rapidsai -c rapidsai-nightly -c conda-forge -c nvidia \
"cudf=${MINOR_VERSION}" \
"rmm=${MINOR_VERSION}" \
"cudatoolkit=$CUDA_REL" \
Expand Down
6 changes: 3 additions & 3 deletions ci/docs/build.sh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#!/bin/bash
# Copyright (c) 2021, NVIDIA CORPORATION.
# Copyright (c) 2021-2022, NVIDIA CORPORATION.
#################################
# cuGraph Docs build script for CI #
#################################
Expand Down Expand Up @@ -41,14 +41,14 @@ conda list --show-channel-urls
gpuci_logger "Build Doxygen docs"
wget "https://raw.githubusercontent.com/rapidsai/docs/gh-pages/api/librmm/${BRANCH_VERSION}/rmm.tag" || echo "Failed to download rmm Doxygen tag"
cd $PROJECT_WORKSPACE/cpp/build
make docs_cugraph
cmake --build . -t docs_cugraph

# Build Python docs
gpuci_logger "Build Sphinx docs"
cd $PROJECT_WORKSPACE/docs/cugraph
make html

#Commit to Website
# Commit to Website
cd $DOCS_WORKSPACE

for PROJECT in ${PROJECTS[@]}; do
Expand Down
4 changes: 2 additions & 2 deletions conda/environments/cugraph_dev_cuda11.2.yml
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
name: cugraph_dev
channels:
- rapidsai
- nvidia
- rapidsai-nightly
- conda-forge
- nvidia
dependencies:
- c-compiler
- cxx-compiler
Expand All @@ -17,7 +17,7 @@ dependencies:
- libraft-distance=22.10.*
- raft-dask=22.10.*
- pylibraft=22.10.*
- cuda-python>=11.5,<11.7.1
- cuda-python>=11.7.1,<12.0
- dask==2022.9.2
- distributed==2022.9.2
- dask-cuda=22.10.*
Expand Down
4 changes: 2 additions & 2 deletions conda/environments/cugraph_dev_cuda11.4.yml
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
name: cugraph_dev
channels:
- rapidsai
- nvidia
- rapidsai-nightly
- conda-forge
- nvidia
dependencies:
- c-compiler
- cxx-compiler
Expand All @@ -17,7 +17,7 @@ dependencies:
- libraft-distance=22.10.*
- raft-dask=22.10.*
- pylibraft=22.10.*
- cuda-python>=11.5,<11.7.1
- cuda-python>=11.7.1,<12.0
- dask==2022.9.2
- distributed==2022.9.2
- dask-cuda=22.10.*
Expand Down
4 changes: 2 additions & 2 deletions conda/environments/cugraph_dev_cuda11.5.yml
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
name: cugraph_dev
channels:
- rapidsai
- nvidia
- rapidsai-nightly
- conda-forge
- nvidia
dependencies:
- c-compiler
- cxx-compiler
Expand All @@ -17,7 +17,7 @@ dependencies:
- libraft-distance=22.10.*
- raft-dask=22.10.*
- pylibraft=22.10.*
- cuda-python>=11.5,<11.7.1
- cuda-python>=11.7.1,<12.0
- dask==2022.9.2
- distributed==2022.9.2
- dask-cuda=22.10.*
Expand Down
4 changes: 2 additions & 2 deletions conda/recipes/cugraph/meta.yaml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) 2018-2022, NVIDIA CORPORATION.

# Usage:
# conda build -c nvidia -c rapidsai -c conda-forge .
# conda build -c rapidsai -c conda-forge -c nvidia .
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
{% set cuda_version='.'.join(environ.get('CUDA', 'unknown').split('.')[:2]) %}
Expand Down Expand Up @@ -63,7 +63,7 @@ requirements:
- ucx-py {{ ucx_py_version }}
- ucx-proc=*=gpu
- {{ pin_compatible('cudatoolkit', max_pin='x', min_pin='x') }}
- cuda-python >=11.5,<11.7.1
- cuda-python >=11.7.1,<12.0

tests: # [linux64]
requirements: # [linux64]
Expand Down
2 changes: 1 addition & 1 deletion conda/recipes/libcugraph/meta.yaml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) 2018-2022, NVIDIA CORPORATION.

# Usage:
# conda build -c nvidia -c rapidsai -c conda-forge .
# conda build -c rapidsai -c conda-forge -c nvidia .
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
{% set cuda_version = '.'.join(environ.get('CUDA', '11.5').split('.')[:2]) %}
Expand Down
2 changes: 1 addition & 1 deletion conda/recipes/pylibcugraph/meta.yaml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Copyright (c) 2022, NVIDIA CORPORATION.

# Usage:
# conda build -c nvidia -c rapidsai -c conda-forge .
# conda build -c rapidsai -c conda-forge -c nvidia .
{% set version = environ.get('GIT_DESCRIBE_TAG', '0.0.0.dev').lstrip('v') + environ.get('VERSION_SUFFIX', '') %}
{% set minor_version = version.split('.')[0] + '.' + version.split('.')[1] %}
{% set cuda_version='.'.join(environ.get('CUDA', 'unknown').split('.')[:2]) %}
Expand Down
6 changes: 3 additions & 3 deletions conda_build.sh
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
#!/usr/bin/env bash
# Copyright (c) 2021, NVIDIA CORPORATION
# Copyright (c) 2021-2022, NVIDIA CORPORATION

set -xe

CUDA_REL=${CUDA_VERSION%.*}

conda install conda-build anaconda-client conda-verify -y
conda build -c nvidia -c rapidsai -c rapidsai-nightly/label/cuda${CUDA_REL} -c conda-forge --python=${PYTHON} conda/recipes/cugraph
conda build -c rapidsai -c rapidsai-nightly/label/cuda${CUDA_REL} -c conda-forge -c nvidia --python=${PYTHON} conda/recipes/cugraph

if [ "$UPLOAD_PACKAGE" == '1' ]; then
export UPLOADFILE=`conda build -c nvidia -c rapidsai -c conda-forge --python=${PYTHON} conda/recipes/cugraph --output`
export UPLOADFILE=`conda build -c rapidsai -c conda-forge -c nvidia --python=${PYTHON} conda/recipes/cugraph --output`
SOURCE_BRANCH=main

test -e ${UPLOADFILE}
Expand Down

0 comments on commit 92434ff

Please sign in to comment.