-
Notifications
You must be signed in to change notification settings - Fork 149
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 5c13878
Showing
24 changed files
with
2,682 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2021 Princeton Vision & Learning Lab | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching | ||
This repository contains the source code for our paper: | ||
|
||
[RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching](https://www.google.com)<br/> | ||
Lahav Lipson, Zachary Teed and Jia Deng<br/> | ||
|
||
<img src="RAFTStereo.png"> | ||
|
||
## Requirements | ||
The code has been tested with PyTorch 1.7 and Cuda 10.2. | ||
```Shell | ||
conda env create -f environment.yaml | ||
conda activate raftstereo | ||
``` | ||
|
||
|
||
|
||
|
||
## Required Data | ||
To evaluate/train RAFT, you will need to download the required datasets. | ||
* [Sceneflow](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html#:~:text=on%20Academic%20Torrents-,FlyingThings3D,-Driving) (Includes FlyingThings3D, Driving & Monkaa | ||
* [Middlebury](https://vision.middlebury.edu/stereo/data/) | ||
* [ETH3D](https://www.eth3d.net/datasets#low-res-two-view-test-data) | ||
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo) | ||
|
||
To download the ETH3D and Middlebury test datasets for the [demos](#demos), run | ||
```Shell | ||
chmod ug+x download_datasets.sh && ./download_datasets.sh | ||
``` | ||
|
||
By default `stereo_datasets.py` will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the `datasets` folder | ||
|
||
```Shell | ||
├── datasets | ||
├── FlyingThings3D | ||
├── frames_cleanpass | ||
├── frames_finalpass | ||
├── disparity | ||
├── Monkaa | ||
├── frames_cleanpass | ||
├── frames_finalpass | ||
├── disparity | ||
├── Driving | ||
├── frames_cleanpass | ||
├── frames_finalpass | ||
├── disparity | ||
├── KITTI | ||
├── testing | ||
├── training | ||
├── devkit | ||
├── Middlebury | ||
├── MiddEval3 | ||
├── ETH3D | ||
├── lakeside_1l | ||
├── ... | ||
├── tunnel_3s | ||
``` | ||
|
||
## Demos | ||
Pretrained models can be downloaded by running | ||
```Shell | ||
chmod ug+x download_models.sh && ./download_models.sh | ||
``` | ||
or downloaded from [google drive](https://drive.google.com/drive/folders/1booUFYEXmsdombVuglatP0nZXb5qI89J) | ||
|
||
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run | ||
```Shell | ||
python demo.py --restore_ckpt models/raftstereo-sceneflow.pth | ||
``` | ||
Or for ETH3D: | ||
```Shell | ||
python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/*/im0.png -r=datasets/ETH3D/*/im1.png | ||
``` | ||
Using our fastest model: | ||
```Shell | ||
python demo.py --restore_ckpt models/raftstereo-realtime.pth --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru | ||
``` | ||
|
||
To save the disparity values as `.npy` files, run any of the demos with the `--save_numpy` flag. | ||
|
||
## Converting Disparity to Depth | ||
|
||
If the camera focal length and camera baseline are known, disparity predictions can be converted to depth values using | ||
|
||
<img src="depth_eq.png" width="320"> | ||
|
||
Note that the units of the focal length are _pixels_ not millimeters. | ||
|
||
## Evaluation | ||
|
||
To evaluate a trained model on a validation set (e.g. Middlebury), run | ||
```Shell | ||
python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H | ||
``` | ||
|
||
## Training | ||
|
||
Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to `runs/` which can be visualized using tensorboard. | ||
|
||
```Shell | ||
python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision | ||
``` | ||
To train using significantly less memory, change `--n_downsample 2` to `--n_downsample 3`. This will slightly reduce accuracy. | ||
|
||
## (Optional) Faster Implementation | ||
|
||
We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps. | ||
```Shell | ||
cd sampler && python setup.py install && cd .. | ||
``` | ||
Running demo.py, train_stereo.py or evaluate.py with `--corr_implementation reg_cuda` together with `--mixed_precision` will speed up the model without impacting performance. | ||
|
||
To significantly decrease memory consumption on high resolution images, use `--corr_implementation alt`. This implementation is slower than the default, however. |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
import torch | ||
import torch.nn.functional as F | ||
from core.utils.utils import bilinear_sampler | ||
|
||
try: | ||
import corr_sampler | ||
except: | ||
pass | ||
|
||
try: | ||
import alt_cuda_corr | ||
except: | ||
# alt_cuda_corr is not compiled | ||
pass | ||
|
||
|
||
class CorrSampler(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, volume, coords, radius): | ||
ctx.save_for_backward(volume,coords) | ||
ctx.radius = radius | ||
corr, = corr_sampler.forward(volume, coords, radius) | ||
return corr | ||
@staticmethod | ||
def backward(ctx, grad_output): | ||
volume, coords = ctx.saved_tensors | ||
grad_output = grad_output.contiguous() | ||
grad_volume, = corr_sampler.backward(volume, coords, grad_output, ctx.radius) | ||
return grad_volume, None, None | ||
|
||
class CorrBlockFast1D: | ||
def __init__(self, fmap1, fmap2, num_levels=4, radius=4): | ||
self.num_levels = num_levels | ||
self.radius = radius | ||
self.corr_pyramid = [] | ||
# all pairs correlation | ||
corr = CorrBlockFast1D.corr(fmap1, fmap2) | ||
batch, h1, w1, dim, w2 = corr.shape | ||
corr = corr.reshape(batch*h1*w1, dim, 1, w2) | ||
for i in range(self.num_levels): | ||
self.corr_pyramid.append(corr.view(batch, h1, w1, -1, w2//2**i)) | ||
corr = F.avg_pool2d(corr, [1,2], stride=[1,2]) | ||
|
||
def __call__(self, coords): | ||
out_pyramid = [] | ||
bz, _, ht, wd = coords.shape | ||
coords = coords[:, [0]] | ||
for i in range(self.num_levels): | ||
corr = CorrSampler.apply(self.corr_pyramid[i].squeeze(3), coords/2**i, self.radius) | ||
out_pyramid.append(corr.view(bz, -1, ht, wd)) | ||
return torch.cat(out_pyramid, dim=1) | ||
|
||
@staticmethod | ||
def corr(fmap1, fmap2): | ||
B, D, H, W1 = fmap1.shape | ||
_, _, _, W2 = fmap2.shape | ||
fmap1 = fmap1.view(B, D, H, W1) | ||
fmap2 = fmap2.view(B, D, H, W2) | ||
corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2) | ||
corr = corr.reshape(B, H, W1, 1, W2).contiguous() | ||
return corr / torch.sqrt(torch.tensor(D).float()) | ||
|
||
|
||
class PytorchAlternateCorrBlock1D: | ||
def __init__(self, fmap1, fmap2, num_levels=4, radius=4): | ||
self.num_levels = num_levels | ||
self.radius = radius | ||
self.corr_pyramid = [] | ||
self.fmap1 = fmap1 | ||
self.fmap2 = fmap2 | ||
|
||
def corr(self, fmap1, fmap2, coords): | ||
B, D, H, W = fmap2.shape | ||
# map grid coordinates to [-1,1] | ||
xgrid, ygrid = coords.split([1,1], dim=-1) | ||
xgrid = 2*xgrid/(W-1) - 1 | ||
ygrid = 2*ygrid/(H-1) - 1 | ||
|
||
grid = torch.cat([xgrid, ygrid], dim=-1) | ||
output_corr = [] | ||
for grid_slice in grid.unbind(3): | ||
fmapw_mini = F.grid_sample(fmap2, grid_slice, align_corners=True) | ||
corr = torch.sum(fmapw_mini * fmap1, dim=1) | ||
output_corr.append(corr) | ||
corr = torch.stack(output_corr, dim=1).permute(0,2,3,1) | ||
|
||
return corr / torch.sqrt(torch.tensor(D).float()) | ||
|
||
def __call__(self, coords): | ||
r = self.radius | ||
coords = coords.permute(0, 2, 3, 1) | ||
batch, h1, w1, _ = coords.shape | ||
fmap1 = self.fmap1 | ||
fmap2 = self.fmap2 | ||
out_pyramid = [] | ||
for i in range(self.num_levels): | ||
dx = torch.zeros(1) | ||
dy = torch.linspace(-r, r, 2*r+1) | ||
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1).to(coords.device) | ||
centroid_lvl = coords.reshape(batch, h1, w1, 1, 2).clone() | ||
centroid_lvl[...,0] = centroid_lvl[...,0] / 2**i | ||
coords_lvl = centroid_lvl + delta.view(-1, 2) | ||
corr = self.corr(fmap1, fmap2, coords_lvl) | ||
fmap2 = F.avg_pool2d(fmap2, [1, 2], stride=[1, 2]) | ||
out_pyramid.append(corr) | ||
out = torch.cat(out_pyramid, dim=-1) | ||
return out.permute(0, 3, 1, 2).contiguous().float() | ||
|
||
|
||
class CorrBlock1D: | ||
def __init__(self, fmap1, fmap2, num_levels=4, radius=4): | ||
self.num_levels = num_levels | ||
self.radius = radius | ||
self.corr_pyramid = [] | ||
|
||
# all pairs correlation | ||
corr = CorrBlock1D.corr(fmap1, fmap2) | ||
|
||
batch, h1, w1, dim, w2 = corr.shape | ||
corr = corr.reshape(batch*h1*w1, dim, 1, w2) | ||
|
||
self.corr_pyramid.append(corr) | ||
for i in range(self.num_levels): | ||
corr = F.avg_pool2d(corr, [1,2], stride=[1,2]) | ||
self.corr_pyramid.append(corr) | ||
|
||
def __call__(self, coords): | ||
r = self.radius | ||
coords = coords[:, :1].permute(0, 2, 3, 1) | ||
batch, h1, w1, _ = coords.shape | ||
|
||
out_pyramid = [] | ||
for i in range(self.num_levels): | ||
corr = self.corr_pyramid[i] | ||
dx = torch.linspace(-r, r, 2*r+1) | ||
dx = dx.view(1, 1, 2*r+1, 1).to(coords.device) | ||
x0 = dx + coords.reshape(batch*h1*w1, 1, 1, 1) / 2**i | ||
y0 = torch.zeros_like(x0) | ||
|
||
coords_lvl = torch.cat([x0,y0], dim=-1) | ||
corr = bilinear_sampler(corr, coords_lvl) | ||
corr = corr.view(batch, h1, w1, -1) | ||
out_pyramid.append(corr) | ||
|
||
out = torch.cat(out_pyramid, dim=-1) | ||
return out.permute(0, 3, 1, 2).contiguous().float() | ||
|
||
@staticmethod | ||
def corr(fmap1, fmap2): | ||
B, D, H, W1 = fmap1.shape | ||
_, _, _, W2 = fmap2.shape | ||
fmap1 = fmap1.view(B, D, H, W1) | ||
fmap2 = fmap2.view(B, D, H, W2) | ||
corr = torch.einsum('aijk,aijh->ajkh', fmap1, fmap2) | ||
corr = corr.reshape(B, H, W1, 1, W2).contiguous() | ||
return corr / torch.sqrt(torch.tensor(D).float()) | ||
|
||
|
||
class AlternateCorrBlock: | ||
def __init__(self, fmap1, fmap2, num_levels=4, radius=4): | ||
raise NotImplementedError | ||
self.num_levels = num_levels | ||
self.radius = radius | ||
|
||
self.pyramid = [(fmap1, fmap2)] | ||
for i in range(self.num_levels): | ||
fmap1 = F.avg_pool2d(fmap1, 2, stride=2) | ||
fmap2 = F.avg_pool2d(fmap2, 2, stride=2) | ||
self.pyramid.append((fmap1, fmap2)) | ||
|
||
def __call__(self, coords): | ||
coords = coords.permute(0, 2, 3, 1) | ||
B, H, W, _ = coords.shape | ||
dim = self.pyramid[0][0].shape[1] | ||
|
||
corr_list = [] | ||
for i in range(self.num_levels): | ||
r = self.radius | ||
fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous() | ||
fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous() | ||
|
||
coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous() | ||
corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r) | ||
corr_list.append(corr.squeeze(1)) | ||
|
||
corr = torch.stack(corr_list, dim=1) | ||
corr = corr.reshape(B, -1, H, W) | ||
return corr / torch.sqrt(torch.tensor(dim).float()) |
Oops, something went wrong.