Skip to content

phil65/LLMling-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLMling-models

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

llmling-models

Collection of model wrappers and adapters for use with LLMling-Agent, but should work with the underlying pydantic-ai API without issues.

WARNING:

This is just a prototype for now and will likely change in the future. Also, pydantic-ais APIs dont seem stable yet, so things might not work across all pydantic-ai versions. I will try to keep this up to date as fast as possible.

Available Models

LLM Library Adapter

Adapter to use models from the LLM library with Pydantic-AI:

from pydantic_ai import Agent
from llmling_models.llm_adapter import LLMAdapter

# Basic usage
adapter = LLMAdapter(model_name="gpt-4o-mini")
agent = Agent(model=adapter)
result = await agent.run("Write a short poem")

# Streaming support
async with agent.run_stream("Test prompt") as response:
    async for chunk in response.stream():
        print(chunk)

# Usage statistics
result = await agent.run("Test prompt")
usage = result.usage()
print(f"Request tokens: {usage.request_tokens}")
print(f"Response tokens: {usage.response_tokens}")

(Examples need to be wrapped in async function and run with asyncio.run)

AISuite Adapter

Adapter to use models from AISuite with Pydantic-AI:

from pydantic_ai import Agent
from llmling_models.aisuite_adapter import AISuiteAdapter

# Basic usage
adapter = AISuiteAdapter(model="model_name")
agent = Agent(adapter)
result = await agent.run("Write a story")

Multi-Models

Fallback Model

Tries models in sequence until one succeeds. Perfect for handling rate limits or service outages:

from llmling_models import FallbackMultiModel

fallback_model = FallbackMultiModel(
    models=[
        "openai:gpt-4",           # Try this first
        "openai:gpt-3.5-turbo",   # Fallback option
        "anthropic:claude-2"       # Last resort
    ]
)
agent = Agent(fallback_model)
result = await agent.run("Complex question")

Augmented Model

Enhances prompts through pre- and post-processing steps using auxiliary language models:

from llmling_models import AugmentedModel

model = AugmentedModel(
    main_model="openai:gpt-4",
    pre_prompt={
        "text": "Expand this question: {input}",
        "model": "openai:gpt-3.5-turbo"
    },
    post_prompt={
        "text": "Summarize this response concisely: {output}",
        "model": "openai:gpt-3.5-turbo"
    }
)
agent = Agent(model)

# The question will be expanded before processing
# and the response will be summarized afterward
result = await agent.run("What is AI?")

Input Model

A model that delegates responses to human input, useful for testing, debugging, or creating hybrid human-AI workflows:

from pydantic_ai import Agent
from llmling_models import InputModel

# Basic usage with default console input
model = InputModel(
    prompt_template="🤖 Question: {prompt}",
    show_system=True,
    input_prompt="Your answer: ",
)

# Create agent with system context
agent = Agent(
    model=model,
    system_prompt="You are helping test an input model. Be concise.",
)

# Run interactive conversation
result = await agent.run("What's your favorite color?")
print(f"You responded: {result.data}")

# Supports streaming input
async with agent.run_stream("Tell me a story...") as response:
    async for chunk in response.stream():
        print(chunk, end="", flush=True)

Features:

  • Interactive console input for testing and debugging
  • Support for streaming input (character by character, but not "true" async with default handler)
  • Configurable message formatting
  • Custom input handlers for different input sources
  • System message display control
  • Full conversation context support

This model is particularly useful for:

  • Testing complex prompt chains
  • Creating hybrid human-AI workflows
  • Debugging agent behavior
  • Collecting human feedback
  • Educational scenarios where human input is needed

User Select Model

An interactive model that lets users manually choose which model to use for each prompt:

from pydantic_ai import Agent
from llmling_models import UserSelectModel

# Basic setup with model list
model = UserSelectModel(
    models=["openai:gpt-4o-mini", "openai:gpt-3.5-turbo", "anthropic:claude-3"]
)

agent = Agent(model)

# The user will be shown the prompt and available models,
# and can choose which one to use for the response
result = await agent.run("What is the meaning of life?")

Model Delegation

Dynamically selects models based on given prompt. Uses a selector model to choose the most appropriate model for each task:

from pydantic_ai import Agent
from llmling_models import DelegationMultiModel

# Basic setup with model list
delegation_model = DelegationMultiModel(
    selector_model="openai:gpt-4-turbo",
    models=["openai:gpt-4", "openai:gpt-3.5-turbo"],
    selection_prompt="Pick gpt-4 for complex tasks, gpt-3.5-turbo for simple queries."
)

# Advanced setup with model descriptions
delegation_model = DelegationMultiModel(
    selector_model="openai:gpt-4-turbo",
    models=["openai:gpt-4", "anthropic:claude-2", "openai:gpt-3.5-turbo"],
    model_descriptions={
        "openai:gpt-4": "Complex reasoning, math problems, and coding tasks",
        "anthropic:claude-2": "Long-form analysis and research synthesis",
        "openai:gpt-3.5-turbo": "Simple queries, chat, and basic information"
    },
    selection_prompt="Select the most appropriate model for the task."
)

agent = Agent(delegation_model)

# The selector model will analyze the prompt and choose the most suitable model
result = await agent.run("Solve this complex mathematical proof...")

Cost-Optimized Model

Selects models based on input cost limits, automatically choosing the most appropriate model within your budget constraints:

from pydantic_ai import Agent
from llmling_models import CostOptimizedMultiModel

# Use cheapest model that can handle the task
cost_model = CostOptimizedMultiModel(
    models=[
        "openai:gpt-4",           # More expensive
        "openai:gpt-3.5-turbo",   # Less expensive
    ],
    max_input_cost=0.1,          # Maximum cost in USD per request
    strategy="cheapest_possible"  # Use cheapest model that fits
)

# Or use the best model within budget
cost_model = CostOptimizedMultiModel(
    models=[
        "openai:gpt-4-32k",      # Most expensive
        "openai:gpt-4",          # Medium cost
        "openai:gpt-3.5-turbo",  # Cheapest
    ],
    max_input_cost=0.5,              # Higher budget
    strategy="best_within_budget"     # Use best model within budget
)

agent = Agent(cost_model)
result = await agent.run("Your prompt here")

Token-Optimized Model

Automatically selects models based on input token count and context window requirements:

from pydantic_ai import Agent
from llmling_models import TokenOptimizedMultiModel

# Create model that automatically handles different context lengths
token_model = TokenOptimizedMultiModel(
    models=[
        "openai:gpt-4-32k",        # 32k context
        "openai:gpt-4",            # 8k context
        "openai:gpt-3.5-turbo",    # 4k context
    ],
    strategy="efficient"           # Use smallest sufficient context window
)

# Or maximize context window availability
token_model = TokenOptimizedMultiModel(
    models=[
        "openai:gpt-4-32k",        # 32k context
        "openai:gpt-4",            # 8k context
        "openai:gpt-3.5-turbo",    # 4k context
    ],
    strategy="maximum_context"     # Use largest available context window
)

agent = Agent(token_model)

# Will automatically select appropriate model based on input length
result = await agent.run("Your long prompt here...")

# Long inputs automatically use models with larger context windows
result = await agent.run("Very long document..." * 1000)

The cost-optimized model ensures you stay within budget while getting the best possible model for your needs, while the token-optimized model automatically handles varying input lengths by selecting models with appropriate context windows.

Remote Input Model

A model that connects to a remote human operator, allowing distributed human-in-the-loop operations:

from pydantic_ai import Agent
from llmling_models import RemoteInputModel

# Basic setup with WebSocket (preferred for streaming)
model = RemoteInputModel(
    url="ws://operator:8000/v1/chat/stream",
    api_key="your-api-key"
)

# Or use REST API
model = RemoteInputModel(
    url="http://operator:8000/v1/chat",
    api_key="your-api-key"
)

agent = Agent(model)

# The request will be forwarded to the remote operator
result = await agent.run("What's the meaning of life?")
print(f"Remote operator responded: {result.data}")

# Streaming also works with WebSocket protocol
async with agent.run_stream("Tell me a story...") as response:
    async for chunk in response.stream():
        print(chunk, end="", flush=True)

Features:

  • Distributed human-in-the-loop operations
  • WebSocket support for real-time streaming
  • REST API for simpler setups
  • Full conversation context support
  • Secure authentication via API keys

Setting up a Remote Model Server

Setting up a remote model server is straightforward. You just need a pydantic-ai model and can start serving it:

from llmling_models.remote_model.server import ModelServer

# Create and start server
server = ModelServer(
    model="openai:gpt-4",
    api_key="your-secret-key",  # Optional authentication
)
server.run(port=8000)

That's it! The server now accepts both REST and WebSocket connections and handles all the message protocol details for you.

Features:

  • Simple setup - just provide a model
  • Optional API key authentication
  • Automatic handling of both REST and WebSocket protocols
  • Full pydantic-ai message protocol support
  • Usage statistics forwarding
  • Built-in error handling and logging

For development, you might want to run the server locally:

server = ModelServer(
    model="openai:gpt-4",
    api_key="dev-key"
)
server.run(host="localhost", port=8000)

For production, you'll typically want to run it on a public server with proper authentication:

server = ModelServer(
    model="openai:gpt-4",
    api_key="your-secure-key",  # Make sure to use a strong key
    title="Production GPT-4 Server",
    description="Serves GPT-4 model for production use"
)
server.run(
    host="0.0.0.0",  # Accept connections from anywhere
    port=8000,
    workers=4  # Multiple workers for better performance
)

Both REST and WebSocket protocols are supported, with WebSocket being preferred for streaming capabilities. They also maintain the full pydantic-ai message protocol, ensuring compatibility with all features of the framework.

All multi models are generically typed to follow pydantic best practices. Usefulness for that is debatable though. :P

Extended infer_model

LLMling-models also provides an extended infer_model function that also resolves some of the included models as well as:

  • OpenRouter (openrouter:provider/model-name, requires OPENROUTER_API_KEY env var)
  • Grok (X) (grok:grok-2-1212, requires X_AI_API_KEY env var)
  • DeepSeek (deepsek:deepsek-chat, requires DEEPSEEK_API_KEY env var)
  • Github Copilot (copilot:gpt-4o-mini, requires GITHUB_COPILOT_API_KEY env var)
  • Perplexity (perplexity:xyz, requires PERPLEXITY_API_KEY env var)

Also adds a fallback to a simple httpx-based OpenAI client in case openai library is not installed or we are inside an pyodide environment.

Installation

pip install llmling-models

Requirements

  • Python 3.12+
  • pydantic-ai
  • llm (optional, for LLM adapter)
  • aisuite (optional, for aisuite adapter)
  • Either tokenizers or transformers for improved token calculation

License

MIT