This repository has been archived by the owner on Nov 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Bedapudi Praneeth <[email protected]>
- Loading branch information
1 parent
512ca5d
commit d78d6b9
Showing
3 changed files
with
96 additions
and
194 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,187 +1,95 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Sun May 10 15:46:01 2020 | ||
@author: harikodali | ||
""" | ||
import os | ||
import pickle | ||
import torch | ||
import pydload | ||
|
||
import numpy as np | ||
|
||
from tensorflow.keras.models import Model | ||
from tensorflow.keras.layers import Input, LSTM, Dense, TimeDistributed, Activation, dot, concatenate, Bidirectional | ||
from tensorflow.keras.preprocessing.sequence import pad_sequences | ||
from tensorflow.keras.utils import to_categorical | ||
|
||
def get_text_encodings(texts, parameters): | ||
|
||
enc_seq = parameters["enc_token"].texts_to_sequences(texts) | ||
pad_seq = pad_sequences(enc_seq, maxlen=parameters["max_encoder_seq_length"], | ||
padding='post') | ||
pad_seq = to_categorical(pad_seq, num_classes=parameters["enc_vocab_size"]) | ||
return pad_seq | ||
|
||
|
||
def get_extra_chars(parameters): | ||
allowed_extras = [] | ||
for d_c, d_i in parameters["dec_token"].word_index.items(): | ||
if d_c.lower() not in parameters["enc_token"].word_index: | ||
allowed_extras.append(d_i) | ||
return allowed_extras | ||
|
||
def get_model_instance(parameters): | ||
|
||
encoder_inputs = Input(shape=(None, parameters["enc_vocab_size"],)) | ||
encoder = Bidirectional(LSTM(128, return_sequences=True, return_state=True), | ||
merge_mode='concat') | ||
encoder_outputs, forward_h, forward_c, backward_h, backward_c = encoder(encoder_inputs) | ||
|
||
encoder_h = concatenate([forward_h, backward_h]) | ||
encoder_c = concatenate([forward_c, backward_c]) | ||
|
||
decoder_inputs = Input(shape=(None, parameters["dec_vocab_size"],)) | ||
decoder_lstm = LSTM(256, return_sequences=True) | ||
decoder_outputs = decoder_lstm(decoder_inputs, initial_state=[encoder_h, encoder_c]) | ||
|
||
attention = dot([decoder_outputs, encoder_outputs], axes=(2, 2)) | ||
attention = Activation('softmax', name='attention')(attention) | ||
context = dot([attention, encoder_outputs], axes=(2, 1)) | ||
decoder_combined_context = concatenate([context, decoder_outputs]) | ||
|
||
output = TimeDistributed(Dense(128, activation="relu"))(decoder_combined_context) | ||
output = TimeDistributed(Dense(parameters["dec_vocab_size"], activation="softmax"))(output) | ||
|
||
model = Model([encoder_inputs, decoder_inputs], [output]) | ||
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) | ||
|
||
return model | ||
|
||
|
||
def decode(model, parameters, input_texts, allowed_extras, batch_size): | ||
input_texts_c = input_texts.copy() | ||
out_dict = {} | ||
input_sequences = get_text_encodings(input_texts, parameters) | ||
|
||
parameters["reverse_dec_dict"][0] = "\n" | ||
outputs = [""]*len(input_sequences) | ||
|
||
target_text = "\t" | ||
target_seq = parameters["dec_token"].texts_to_sequences([target_text]*len(input_sequences)) | ||
target_seq = pad_sequences(target_seq, maxlen=parameters["max_decoder_seq_length"], | ||
padding="post") | ||
target_seq_hot = to_categorical(target_seq, num_classes=parameters["dec_vocab_size"]) | ||
|
||
extra_char_count = [0]*len(input_texts) | ||
prev_char_index = [0]*len(input_texts) | ||
i = 0 | ||
while len(input_texts) != 0: | ||
curr_char_index = [i - extra_char_count[j] for j in range(len(input_texts))] | ||
input_encodings = np.argmax(input_sequences, axis=2) | ||
|
||
cur_inp_list = [input_encodings[_][curr_char_index[_]] if curr_char_index[_] < len(input_texts[_]) else 0 for _ in range(len(input_texts))] | ||
output_tokens = model.predict([input_sequences, target_seq_hot], batch_size=batch_size) | ||
sampled_possible_indices = np.argsort(output_tokens[:, i, :])[:, ::-1].tolist() | ||
sampled_token_indices = [] | ||
for j, per_char_list in enumerate(sampled_possible_indices): | ||
for index in per_char_list: | ||
if index in allowed_extras: | ||
if parameters["reverse_dec_dict"][index] == '\n' and cur_inp_list[j] != 0: | ||
continue | ||
elif parameters["reverse_dec_dict"][index] != '\n' and prev_char_index[j] in allowed_extras: | ||
continue | ||
sampled_token_indices.append(index) | ||
extra_char_count[j] += 1 | ||
break | ||
elif parameters["enc_token"].word_index[parameters["reverse_dec_dict"][index].lower()] == cur_inp_list[j]: | ||
sampled_token_indices.append(index) | ||
break | ||
|
||
sampled_chars = [parameters["reverse_dec_dict"][index] for index in sampled_token_indices] | ||
|
||
outputs = [outputs[j] + sampled_chars[j] for j, output in enumerate(outputs)] | ||
end_indices = sorted([index for index, char in enumerate(sampled_chars) if char == '\n'], reverse=True) | ||
for index in end_indices: | ||
out_dict[input_texts[index]] = outputs[index].strip() | ||
del outputs[index] | ||
del input_texts[index] | ||
del extra_char_count[index] | ||
del sampled_token_indices[index] | ||
input_sequences = np.delete(input_sequences, index, axis=0) | ||
target_seq = np.delete(target_seq, index, axis=0) | ||
if i == parameters["max_decoder_seq_length"]-1 or len(input_texts) == 0: | ||
break | ||
target_seq[:,i+1] = sampled_token_indices | ||
target_seq_hot = to_categorical(target_seq, num_classes=parameters["dec_vocab_size"]) | ||
prev_char_index = sampled_token_indices | ||
i += 1 | ||
outputs = [out_dict[text] for text in input_texts_c] | ||
return outputs | ||
|
||
|
||
model_links = { | ||
'en': { | ||
'checkpoint': 'https://github.com/notAI-tech/fastPunct/releases/download/checkpoint-release/fastpunct_eng_weights.h5', | ||
'params': 'https://github.com/notAI-tech/fastPunct/releases/download/checkpoint-release/parameter_dict.pkl' | ||
}, | ||
|
||
} | ||
|
||
lang_code_mapping = { | ||
'english': 'en', | ||
'french': 'fr', | ||
'italian': 'it' | ||
from transformers import T5Tokenizer, T5ForConditionalGeneration | ||
|
||
MODEL_URLS = { | ||
"english": { | ||
"pytorch_model.bin": "https://github.com/notAI-tech/fastPunct/releases/download/v2/pytorch_model.bin", | ||
"config.json": "https://github.com/notAI-tech/fastPunct/releases/download/v2/config.json", | ||
"special_tokens_map.json": "https://github.com/notAI-tech/fastPunct/releases/download/v2/special_tokens_map.json", | ||
"spiece.model": "https://github.com/notAI-tech/fastPunct/releases/download/v2/spiece.model", | ||
"tokenizer_config.json": "https://github.com/notAI-tech/fastPunct/releases/download/v2/tokenizer_config.json", | ||
}, | ||
} | ||
|
||
class FastPunct(): | ||
|
||
class FastPunct: | ||
tokenizer = None | ||
model = None | ||
parameters = None | ||
def __init__(self, lang_code="en", weights_path=None, params_path=None): | ||
if lang_code not in model_links and lang_code in lang_code_mapping: | ||
lang_code = lang_code_mapping[lang_code] | ||
|
||
if lang_code not in model_links: | ||
print("fastPunct doesn't support '" + lang_code + "' yet.") | ||
print("Please raise a issue at https://github.com/notai-tech/fastPunct/ to add this language into future checklist.") | ||
|
||
def __init__(self, language='english', checkpoint_local_path=None): | ||
|
||
model_name = language.lower() | ||
|
||
if model_name not in MODEL_URLS: | ||
print(f"model_name should be one of {list(MODEL_URLS.keys())}") | ||
return None | ||
|
||
home = os.path.expanduser("~") | ||
lang_path = os.path.join(home, '.fastPunct_' + lang_code) | ||
if weights_path is None: | ||
weights_path = os.path.join(lang_path, 'checkpoint.h5') | ||
if params_path is None: | ||
params_path = os.path.join(lang_path, 'params.pkl') | ||
|
||
#if either of the paths are not mentioned, then, make lang directory from home | ||
if (params_path is None) or (weights_path is None): | ||
if not os.path.exists(lang_path): | ||
os.mkdir(lang_path) | ||
|
||
if not os.path.exists(weights_path): | ||
print('Downloading checkpoint', model_links[lang_code]['checkpoint'], 'to', weights_path) | ||
pydload.dload(url=model_links[lang_code]['checkpoint'], save_to_path=weights_path, max_time=None) | ||
|
||
if not os.path.exists(params_path): | ||
print('Downloading model params', model_links[lang_code]['params'], 'to', params_path) | ||
pydload.dload(url=model_links[lang_code]['params'], save_to_path=params_path, max_time=None) | ||
|
||
|
||
with open(params_path, "rb") as file: | ||
self.parameters = pickle.load(file) | ||
self.parameters["reverse_enc_dict"] = {i:c for c, i in self.parameters["enc_token"].word_index.items()} | ||
self.model = get_model_instance(self.parameters) | ||
self.model.load_weights(weights_path) | ||
self.allowed_extras = get_extra_chars(self.parameters) | ||
|
||
def punct(self, input_texts, batch_size=32): | ||
input_texts = [text.lower() for text in input_texts] | ||
return decode(self.model, self.parameters, input_texts, self.allowed_extras, batch_size) | ||
|
||
def fastpunct(self, input_texts, batch_size=32): | ||
# To be implemented | ||
return None | ||
|
||
if __name__ == "__main__": | ||
fastpunct = FastPunct() | ||
print(fastpunct.punct(["oh i thought you were here", "in theory everyone knows what a comma is", "hey how are you doing", "my name is sheela i am in love with hrithik"])) | ||
lang_path = os.path.join(home, ".FastPunct_" + model_name) | ||
|
||
if checkpoint_local_path: | ||
lang_path = checkpoint_local_path | ||
|
||
if not os.path.exists(lang_path): | ||
os.mkdir(lang_path) | ||
|
||
for file_name, url in MODEL_URLS[model_name].items(): | ||
file_path = os.path.join(lang_path, file_name) | ||
if os.path.exists(file_path): | ||
continue | ||
print(f"Downloading {file_name}") | ||
pydload.dload(url=url, save_to_path=file_path, max_time=None) | ||
|
||
self.tokenizer = T5Tokenizer.from_pretrained(lang_path) | ||
self.model = T5ForConditionalGeneration.from_pretrained( | ||
lang_path, return_dict=True | ||
) | ||
|
||
if torch.cuda.is_available(): | ||
print(f"Using GPU") | ||
self.model = self.model.cuda() | ||
|
||
def punct( | ||
self, sentences, beam_size=1, max_len=None, correct=False | ||
): | ||
return_single = True | ||
if isinstance(sentences, list): | ||
return_single = False | ||
else: | ||
sentences = [sentences] | ||
|
||
prefix = 'punctuate' | ||
if correct: | ||
beam_size = 8 | ||
prefix = 'correct' | ||
|
||
input_ids = self.tokenizer( | ||
[ | ||
f"{prefix}: {sentence}" | ||
for sentence in sentences | ||
], | ||
return_tensors="pt", | ||
padding=True, | ||
).input_ids | ||
|
||
if not max_len: | ||
max_len = max([len(tokenized_input) for tokenized_input in input_ids]) + max([len(s.split()) for s in sentences]) + 4 | ||
|
||
if torch.cuda.is_available(): | ||
input_ids = input_ids.to("cuda") | ||
|
||
output_ids = self.model.generate( | ||
input_ids, num_beams=beam_size, max_length=max_len | ||
) | ||
|
||
outputs = [ | ||
self.tokenizer.decode(output_id, skip_special_tokens=True) | ||
for output_id in output_ids | ||
] | ||
|
||
if return_single: | ||
outputs = outputs[0] | ||
|
||
return outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,18 +14,15 @@ | |
|
||
# Package meta-data. | ||
NAME = 'fastpunct' | ||
DESCRIPTION = 'Punctuation restoration with sequence to sequence networks' | ||
DESCRIPTION = 'Punctuation restoration and spell correction.' | ||
URL = 'https://github.com/notAI-tech/fastPunct' | ||
EMAIL = '[email protected]' | ||
AUTHOR = 'Hari Krishna Sai Kodali' | ||
REQUIRES_PYTHON = '>=3.5.0' | ||
REQUIRES_PYTHON = '>=3.6.0' | ||
VERSION = subprocess.run(['git', 'describe', '--tags'], stdout=subprocess.PIPE).stdout.decode("utf-8").strip() | ||
|
||
# What packages are required for this module to be executed? | ||
REQUIRED = [ | ||
'numpy', | ||
'pydload' | ||
] | ||
REQUIRED = ["transformers>=4.0.0rc1", "pydload>=1.0.9", "torch>=1.5.0", "sentencepiece"] | ||
|
||
# What packages are optional? | ||
EXTRAS = { | ||
|