-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Athos][ONNX] Add tests for onnx frontend.
Add tests which simultaneously test onnx frontend and 2pc/3pc/cpp backend.
- Loading branch information
1 parent
5c2eedb
commit 23d6c08
Showing
13 changed files
with
1,870 additions
and
68 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,383 @@ | ||
""" | ||
Authors: Pratik Bhatu. | ||
Copyright: | ||
Copyright (c) 2021 Microsoft Research | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
""" | ||
|
||
import numpy as np | ||
import onnx | ||
from onnx import helper | ||
from onnx.backend.test.case.node.gemm import gemm_reference_implementation | ||
|
||
import pytest | ||
|
||
# Athos DIR | ||
import sys, os | ||
import optparse | ||
|
||
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..")) | ||
from tests.utils import ( | ||
ONNXConfig, | ||
Compiler, | ||
assert_almost_equal, | ||
make_onnx_graph, | ||
run_onnx, | ||
Frontend, | ||
) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"a_shape,b_shape,dtype", | ||
[ | ||
((4, 4, 4, 4), (4, 4, 4, 4), np.single), # Normal | ||
pytest.param( | ||
(4, 4), | ||
(4, 4), | ||
np.single, | ||
marks=pytest.mark.skip(reason="non 4/5D input not handled"), | ||
), # Normal | ||
pytest.param( | ||
(2, 2), | ||
(1,), | ||
np.single, | ||
marks=pytest.mark.skip(reason="non 4/5D input not handled"), | ||
), # Broadcasting | ||
pytest.param( | ||
(3, 1, 2, 1), | ||
(2, 1, 4), | ||
np.single, | ||
marks=pytest.mark.skip(reason="non 4/5D input not handled"), | ||
), # Broadcasting | ||
pytest.param( | ||
(2, 2), | ||
(), | ||
np.single, | ||
marks=pytest.mark.skip(reason="non 4/5D input not handled"), | ||
), # Constant | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
"Op", | ||
[ | ||
("Add"), | ||
pytest.param("Sub", marks=pytest.mark.skip(reason="Sub not implemented")), | ||
pytest.param("Mul", marks=pytest.mark.skip(reason="Mul not implemented")), | ||
], | ||
) | ||
def test_arith_binop(test_dir, backend, Op, a_shape, b_shape, dtype): | ||
onnx_to_np_op = {"Add": np.add, "Sub": np.subtract, "Mul": np.multiply} | ||
a = np.random.randn(*a_shape).astype(dtype) | ||
b = np.random.randn(*b_shape).astype(dtype) | ||
out = onnx_to_np_op[Op](a, b) | ||
node = helper.make_node( | ||
Op, | ||
inputs=["a", "b"], | ||
outputs=["out"], | ||
) | ||
graph = make_onnx_graph( | ||
node, | ||
inputs=[a], | ||
outputs=[out], | ||
tensors=[b], | ||
tensor_names=["b"], | ||
name=Op + "_test", | ||
) | ||
expected_output = run_onnx(graph, [a]) | ||
config = ONNXConfig(backend).parse_io(graph) | ||
compiler = Compiler(graph, config, test_dir, Frontend.ONNX) | ||
mpc_output = compiler.compile_and_run([a]) | ||
assert_almost_equal( | ||
model_output=expected_output, mpc_tensor=mpc_output, precision=2 | ||
) | ||
return | ||
|
||
|
||
@pytest.mark.parametrize("dtype", [np.single]) | ||
@pytest.mark.parametrize( | ||
"a_val, divisor", | ||
[ | ||
pytest.param( | ||
[7.0, -7.0], 5.0, marks=pytest.mark.skip(reason="Div not implemented") | ||
), # [1.4, -1.4] | ||
pytest.param( | ||
7.0, 5.0, marks=pytest.mark.skip(reason="Div not implemented") | ||
), # 1.4 | ||
pytest.param( | ||
[3.0, 4.0], [1.0, 2.0], marks=pytest.mark.skip(reason="Div not implemented") | ||
), | ||
], | ||
) | ||
def test_div(test_dir, backend, a_val, divisor, dtype): | ||
Op = "Div" | ||
a = np.array(a_val).astype(dtype) | ||
b = np.array(divisor).astype(dtype) | ||
out = np.divide(a, b) | ||
node = helper.make_node( | ||
Op, | ||
inputs=["a", "b"], | ||
outputs=["out"], | ||
) | ||
graph = make_onnx_graph( | ||
node, | ||
inputs=[a], | ||
outputs=[out], | ||
tensors=[b], | ||
tensor_names=["b"], | ||
name=Op + "_test", | ||
) | ||
expected_output = run_onnx(graph, [a]) | ||
config = ONNXConfig(backend).parse_io(graph) | ||
compiler = Compiler(graph, config, test_dir, Frontend.ONNX) | ||
mpc_output = compiler.compile_and_run([a]) | ||
assert_almost_equal( | ||
model_output=expected_output, mpc_tensor=mpc_output, precision=2 | ||
) | ||
return | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"a_shape, b_shape, bisModel", | ||
[ | ||
([3, 2], [2, 3], True), | ||
pytest.param( | ||
[3, 2], | ||
[2, 3], | ||
False, | ||
marks=pytest.mark.skip( | ||
reason="[matmul] expect atleast one param to belong to model" | ||
), | ||
), | ||
([1, 2], [2, 3], True), | ||
], | ||
) | ||
@pytest.mark.parametrize("dtype", [np.single]) | ||
@pytest.mark.skip(reason="matmul not supported for now. only gemm is.") | ||
def test_matmul(test_dir, backend, a_shape, b_shape, bisModel, dtype): | ||
if backend == "2PC_HE" and a_shape[0] != 1: | ||
pytest.skip("HE only supports vector matrix multiplication") | ||
Op = "MatMul" | ||
a = np.random.randn(*a_shape).astype(dtype) | ||
b = np.random.randn(*b_shape).astype(dtype) | ||
out = np.matmul(a, b) | ||
node = onnx.helper.make_node( | ||
Op, | ||
inputs=["a", "b"], | ||
outputs=["out"], | ||
) | ||
if not bisModel: | ||
graph = make_onnx_graph( | ||
node, | ||
inputs=[a, b], | ||
outputs=[out], | ||
name=Op + "_test", | ||
) | ||
expected_output = run_onnx(graph, [a, b]) | ||
else: | ||
graph = make_onnx_graph( | ||
node, | ||
inputs=[a], | ||
outputs=[out], | ||
tensors=[b], | ||
tensor_names=["b"], | ||
name=Op + "_test", | ||
) | ||
expected_output = run_onnx(graph, [a]) | ||
config = ONNXConfig(backend).parse_io(graph) | ||
compiler = Compiler(graph, config, test_dir, Frontend.ONNX) | ||
if not bisModel: | ||
mpc_output = compiler.compile_and_run([a, b]) | ||
else: | ||
mpc_output = compiler.compile_and_run([a]) | ||
assert_almost_equal( | ||
model_output=expected_output, mpc_tensor=mpc_output, precision=2 | ||
) | ||
return | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"a_shape, b_shape, c_shape, alpha, beta, transA, transB", | ||
[ | ||
pytest.param( | ||
(3, 2), | ||
(2, 3), | ||
(1, 5), | ||
0.25, | ||
0.35, | ||
1, | ||
1, | ||
id="gemm_all_attributes", | ||
marks=pytest.mark.skip(reason="[gemm] alpha,beta not handled"), | ||
), | ||
pytest.param( | ||
(3, 5), | ||
(5, 4), | ||
(1, 4), | ||
0.5, | ||
None, | ||
0, | ||
0, | ||
id="gemm_alpha", | ||
marks=pytest.mark.skip(reason="[gemm] alpha not handled"), | ||
), | ||
pytest.param( | ||
(2, 7), | ||
(7, 4), | ||
(1, 4), | ||
None, | ||
0.5, | ||
0, | ||
0, | ||
id="gemm_beta", | ||
marks=pytest.mark.skip(reason="[gemm] beta not handled"), | ||
), | ||
pytest.param( | ||
(3, 6), (6, 4), (3, 4), None, None, 0, 0, id="gemm_default_matrix_bias" | ||
), | ||
pytest.param( | ||
(2, 10), | ||
(10, 3), | ||
None, | ||
None, | ||
None, | ||
0, | ||
0, | ||
id="gemm_default_no_bias", | ||
marks=pytest.mark.skip(reason="[gemm] bias is mandatory"), | ||
), | ||
pytest.param( | ||
(2, 3), | ||
(3, 4), | ||
(), | ||
None, | ||
None, | ||
0, | ||
0, | ||
id="gemm_default_scalar_bias", | ||
marks=pytest.mark.skip(reason="[gemm] scaleup0 not found"), | ||
), | ||
pytest.param( | ||
(3, 7), | ||
(7, 3), | ||
(1,), | ||
None, | ||
None, | ||
0, | ||
0, | ||
id="gemm_default_single_elem_vector_bias", | ||
), | ||
pytest.param( | ||
(2, 7), (7, 4), (1, 4), None, None, 0, 0, id="gemm_default_vector_bias" | ||
), | ||
pytest.param((6, 3), (6, 4), (1, 4), None, None, 1, 0, id="gemm_transposeA"), | ||
pytest.param((3, 6), (4, 6), (1, 4), None, None, 0, 1, id="gemm_transposeB"), | ||
], | ||
) | ||
@pytest.mark.parametrize("dtype", [np.single]) | ||
def test_gemm( | ||
test_dir, backend, a_shape, b_shape, c_shape, alpha, beta, transA, transB, dtype | ||
): | ||
Op = "Gemm" | ||
a = np.random.randn(*a_shape).astype(dtype) | ||
b = np.random.randn(*b_shape).astype(dtype) | ||
|
||
kwargs = {"inputs": ["a", "b"], "outputs": ["out"]} | ||
npkwargs = {} | ||
|
||
if c_shape is not None: | ||
kwargs["inputs"].append("c") | ||
c = dtype(np.random.randn(*c_shape)) | ||
npkwargs["C"] = c | ||
|
||
if alpha is not None: | ||
kwargs["alpha"] = alpha | ||
npkwargs["alpha"] = alpha | ||
if beta is not None: | ||
kwargs["beta"] = beta | ||
npkwargs["beta"] = beta | ||
if transA == 1: | ||
kwargs["transA"] = 1 | ||
npkwargs["transA"] = 1 | ||
if transB == 1: | ||
kwargs["transB"] = 1 | ||
npkwargs["transB"] = 1 | ||
|
||
out = gemm_reference_implementation(a, b, **npkwargs) | ||
node = onnx.helper.make_node(Op, **kwargs) | ||
|
||
kwargs = { | ||
"inputs": [a], | ||
"outputs": [out], | ||
"tensors": [b], | ||
"tensor_names": ["b"], | ||
"name": Op + "_test", | ||
} | ||
|
||
if c_shape is not None: | ||
kwargs["tensors"].append(c) | ||
kwargs["tensor_names"].append("c") | ||
|
||
graph = make_onnx_graph(node, **kwargs) | ||
expected_output = run_onnx(graph, [a]) | ||
config = ONNXConfig(backend).parse_io(graph) | ||
compiler = Compiler(graph, config, test_dir, Frontend.ONNX) | ||
mpc_output = compiler.compile_and_run([a]) | ||
assert_almost_equal( | ||
model_output=expected_output, mpc_tensor=mpc_output, precision=2 | ||
) | ||
return | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"a_val, b_val", | ||
[ | ||
([1.2, 1.3], [1.2, 1.3]), | ||
([1.2, 1.3], [1.2, 1.2]), | ||
([1.2, 1.3], [1.2]), | ||
], | ||
) | ||
@pytest.mark.parametrize("dtype", [np.single]) | ||
@pytest.mark.skip(reason="[equal] Not able to cast boolean to int ezpc") | ||
def test_equal(test_dir, backend, a_val, b_val, dtype): | ||
Op = "Equal" | ||
a = np.array(a_val).astype(dtype) | ||
b = np.array(b_val).astype(dtype) | ||
out = np.equal(a, b) | ||
node = helper.make_node( | ||
Op, | ||
inputs=["a", "b"], | ||
outputs=["out"], | ||
) | ||
graph = make_onnx_graph( | ||
node, | ||
inputs=[a], | ||
outputs=[out], | ||
tensors=[b], | ||
tensor_names=["b"], | ||
name=Op + "_test", | ||
) | ||
expected_output = run_onnx(graph, [a]) | ||
config = ONNXConfig(backend).parse_io(graph) | ||
compiler = Compiler(graph, config, test_dir, Frontend.ONNX) | ||
mpc_output = compiler.compile_and_run([a]) | ||
assert_almost_equal( | ||
model_output=expected_output, mpc_tensor=mpc_output, precision=2 | ||
) | ||
return |
Oops, something went wrong.