Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Funasr1.0 #1247

Merged
merged 3 commits into from
Jan 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 12 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,12 +90,15 @@ Notes: Support recognition of single audio file, as well as file list in Kaldi-s
### Speech Recognition (Non-streaming)
```python
from funasr import AutoModel

model = AutoModel(model="paraformer-zh")
# for the long duration wav, you could add vad model
# model = AutoModel(model="paraformer-zh", vad_model="fsmn-vad", punc_model="ct-punc")

res = model(input="asr_example_zh.wav", batch_size=64)
# paraformer-zh is a multi-functional asr model
# use vad, punc, spk or not as you need
model = AutoModel(model="paraformer-zh", model_revision="v2.0.2", \
vad_model="fsmn-vad", vad_model_revision="v2.0.2", \
punc_model="ct-punc-c", punc_model_revision="v2.0.2", \
spk_model="cam++", spk_model_revision="v2.0.2")
res = model(input=f"{model.model_path}/example/asr_example.wav",
batch_size=16,
hotword='魔搭')
print(res)
```
Note: `model_hub`: represents the model repository, `ms` stands for selecting ModelScope download, `hf` stands for selecting Huggingface download.
Expand All @@ -108,7 +111,7 @@ chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention

model = AutoModel(model="paraformer-zh-streaming", model_revision="v2.0.0")
model = AutoModel(model="paraformer-zh-streaming", model_revision="v2.0.2")

import soundfile
import os
Expand Down Expand Up @@ -163,7 +166,7 @@ for i in range(total_chunk_num):
```python
from funasr import AutoModel

model = AutoModel(model="ct-punc", model_revision="v2.0.1")
model = AutoModel(model="ct-punc", model_revision="v2.0.2")

res = model(input="那今天的会就到这里吧 happy new year 明年见")
print(res)
Expand All @@ -172,7 +175,7 @@ print(res)
```python
from funasr import AutoModel

model = AutoModel(model="fa-zh", model_revision="v2.0.0")
model = AutoModel(model="fa-zh", model_revision="v2.0.2")

wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/asr_example.wav"
Expand Down
4 changes: 2 additions & 2 deletions examples/industrial_data_pretraining/paraformer/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,5 +18,5 @@
fbanks = frontend(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", batch_size=2)

for batch_idx, fbank_dict in enumerate(fbanks):
res = model(**fbank_dict)
print(res)
res = model(**fbank_dict)
print(res)
6 changes: 4 additions & 2 deletions examples/industrial_data_pretraining/seaco_paraformer/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,10 @@
vad_model_revision="v2.0.2",
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
punc_model_revision="v2.0.2",
spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
spk_model_revision="v2.0.2",
)

res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
hotword='达摩院 磨搭')
res = model(input=f"{model.model_path}/example/asr_example.wav",
hotword='达摩院 魔搭')
print(res)
10 changes: 2 additions & 8 deletions funasr/bin/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,12 +274,9 @@ def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **c
def generate_with_vad(self, input, input_len=None, **cfg):

# step.1: compute the vad model
model = self.vad_model
kwargs = self.vad_kwargs
kwargs.update(cfg)
self.vad_kwargs.update(cfg)
beg_vad = time.time()
res = self.generate(input, input_len=input_len, model=model, kwargs=kwargs, **cfg)
vad_res = res
res = self.generate(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg)
end_vad = time.time()
print(f"time cost vad: {end_vad - beg_vad:0.3f}")

Expand Down Expand Up @@ -312,10 +309,7 @@ def generate_with_vad(self, input, input_len=None, **cfg):
if not len(sorted_data):
logging.info("decoding, utt: {}, empty speech".format(key))
continue


# if kwargs["device"] == "cpu":
# batch_size = 0
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0])

Expand Down
Loading
Loading