Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] in Xnnpack EP, the conversion for fused activation param isn't correct #23115

Open
wants to merge 18 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions onnxruntime/core/providers/xnnpack/detail/utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@

#include "core/common/common.h"
#include "core/common/safeint.h"
#include "core/framework/float16.h"
#include "core/framework/node_unit.h"
#include "core/framework/tensorprotoutils.h"
#include "core/graph/graph.h"
Expand Down Expand Up @@ -267,9 +268,17 @@ std::unique_ptr<IndexedSubGraph::MetaDef> FuseActivation(const NodeUnit& node_un
ORT_ENFORCE(utils::HasExternalData(value) == false,
"External data is not supported for the scalar min/max Clip values");

value_to_set = utils::HasRawData(value)
? *reinterpret_cast<const float*>(value.raw_data().data())
: value.float_data()[0];
int32_t arg_type;
if (GetType(arg, arg_type) && arg_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What if GetType(arg, arg_type) failed here?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Generally type info is always available, so I think this is ok. Shape info may be missing depending on the model.

The Conv op looks to be setup to allow fp32, u8, s8 and optionally fp16. Should this also handle u8 and s8 or should ClipReluChecker limit fusion to fp32 and fp16?

Copy link
Contributor Author

@mszhanyi mszhanyi Dec 23, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So far, core runtime Clip fusion only supports float too.

if (initializer) {
Initializer i(*initializer, graph.ModelPath());
switch (initializer->data_type()) {
case ONNX_NAMESPACE::TensorProto_DataType_FLOAT:
value = *i.data<float>();
break;
// double isn't currently supported
// case ONNX_NAMESPACE::TensorProto_DataType_DOUBLE:
// value = static_cast<float>(*i.data<double>());
// break;
case ONNX_NAMESPACE::TensorProto_DataType_FLOAT16:
value = math::halfToFloat(i.data<MLFloat16>()->val);
break;
default:
ORT_THROW("Unexpected data type for Clip input of ", initializer->data_type());
.
Shall we update them together?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc @snnn

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd leave the core Clip fusion as-is for now. Can be a separate PR if we think there's a use-case that would benefit.

Are you planning on updating ClipReluChecker to limit the types?

Copy link
Contributor Author

@mszhanyi mszhanyi Jan 1, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I checked https://onnx.ai/onnx/operators/onnx__Conv.html#type-constraints, Onnx Conv node shouldn't have u8 or s8 inputs. @skottmckay

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

XNNPack EP's Conv implementation also handles QLinearConv doesn't it?

Copy link
Contributor Author

@mszhanyi mszhanyi Jan 6, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But QLinearConv isn't in node_to_be_fuse list yet. Could we add it in the next PR.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should be good in that case.

To be safer it would be good to add an else that returns an error so that if we get a datatype other than fp32 or fp16 it isn't silently ignored. If we add QLinearConv to the nodes that can fuse (not sure why we don't allow that - maybe xnnpack doesn't support it) the else will make it much easier for a developer to discover they need to update this code.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

already added

// arg is of type FP16
value_to_set = utils::HasRawData(value)
? (*reinterpret_cast<const MLFloat16*>(value.raw_data().data())).ToFloat()
: value.float_data()[0];
} else {
value_to_set = utils::HasRawData(value)
? *reinterpret_cast<const float*>(value.raw_data().data())
: value.float_data()[0];
}
}
}
};
Expand Down
47 changes: 47 additions & 0 deletions onnxruntime/test/providers/xnnpack/xnnpack_basic_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,11 @@

#include "core/common/logging/logging.h"
#include "core/common/span_utils.h"
#include "core/framework/float16.h"
#include "core/framework/utils.h"
#include "core/graph/graph.h"
#include "core/providers/xnnpack/xnnpack_execution_provider.h"
#include "core/providers/xnnpack/xnnpack_init.h"
#include "core/session/inference_session.h"
#include "core/session/onnxruntime_cxx_api.h"
#include "core/session/onnxruntime_session_options_config_keys.h"
Expand Down Expand Up @@ -89,6 +91,51 @@ TEST(XnnpackEP, TestNhwcConvReluClipFusion) {
RunAndVerifyOutputsWithEP(ort_model_path, "TestNhwcConvReluClipFusion", std::move(ep), feeds, params);
}

#ifdef XNNPACK_FP16_SUPPORTED
TEST(XnnpackEP, TestNhwcConvReluClipFusion_FP16) {
const ORTCHAR_T* ort_model_path = ORT_MODEL_FOLDER "nhwc_conv_clip_relu_fp16.onnx";

RandomValueGenerator generator;
TensorShape input_shape_x{1, 16, 16, 192};
std::vector<MLFloat16> input_x = generator.Uniform<MLFloat16>(input_shape_x.GetDims(), -128, 128);

OrtValue ml_value_x;
CreateMLValue<MLFloat16>(input_shape_x.GetDims(), input_x.data(), OrtMemoryInfo(), &ml_value_x);

NameMLValMap feeds;
feeds.insert(std::make_pair("model_input", ml_value_x));

std::function<void(const Graph&)> verify = [](const Graph& graph) -> void {
ASSERT_EQ(graph.NumberOfNodes(), 3) << "Transpose nodes should have been removed, and "
"Conv+Relu and Conv+Clip should have been fused, leaving 3 nodes.";
auto node_iter = graph.Nodes().begin();
auto check_node = [](const Node& node, const std::string& fusion_type) {
const auto& attr = node.GetAttributes();
auto activation = attr.find("activation");
ASSERT_NE(activation, attr.cend()) << "Fused node should have activation attribute";
ASSERT_EQ(activation->second.s(), fusion_type);
};

// check 2nd and 3rd nodes.
// the first node is the Conv that does not get fused (created after first call to GetCapability)
// the 2nd and 3rd nodes are the fused nodes (created after second call to GetCapability)
++node_iter;
check_node(*node_iter, "Clip");
++node_iter;
check_node(*node_iter, "Relu");
};

EPVerificationParams params;
params.ep_node_assignment = ExpectedEPNodeAssignment::All;
params.fp32_abs_err = 0.0002f;
params.graph_verifier = &verify;

auto ep = DefaultXnnpackExecutionProvider();
// So far, CPU EP doensn't support Fp16 Conv fusion, so verify_outputs is skipped.
RunAndVerifyOutputsWithEP(ort_model_path, "TestNhwcConvReluClipFusion_FP16", std::move(ep), feeds, params, {}, false);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not quite following. There should still be valid output from the CPU EP even if it doesn't fuse, so why can't we use verify_outputs?

Suggested change
// So far, CPU EP doensn't support Fp16 Conv fusion, so verify_outputs is skipped.
RunAndVerifyOutputsWithEP(ort_model_path, "TestNhwcConvReluClipFusion_FP16", std::move(ep), feeds, params, {}, false);
// So far, CPU EP doesn't support Fp16 Conv fusion, so verify_outputs is skipped.
RunAndVerifyOutputsWithEP(ort_model_path, "TestNhwcConvReluClipFusion_FP16", std::move(ep), feeds, params, {}, false);

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thx, fixed

Copy link
Contributor Author

@mszhanyi mszhanyi Dec 23, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So far, CPU EP doesn't implement FP16 Clip fusion. The output verification fails because it looks CPU EP falls back to FP32 Clip.

// TODO Add the following activations:
// MlasTanhActivation,
// MlasLogisticActivation,
// MlasClipActivation,

To verify the Xnnpack FP16 conv fusion correctness, I add a new test with a new FP16 model ( with only Conv+Relu).
Current test (Conv+Clip+Relu) is kept because I want to make sure that Conv+Clip fusion can run, that is, the activition parameters are added correctly.

}
#endif

// test we can share the cpu ep allocator with the xnnpack EP
TEST(XnnpackEP, TestAllocatorSharing) {
auto init_session = [](std::vector<std::shared_ptr<IExecutionProvider>>& eps,
Expand Down
Binary file not shown.
Loading