Skip to content

Commit

Permalink
Separating result processor out from profiler.py (#23251)
Browse files Browse the repository at this point in the history
### Description
Separating result processor out from profiler.py without changing the
behaviors of current profile.py



### Motivation and Context
Less dependency and smaller code for processing profile from other
scenarios.

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
  • Loading branch information
jchen351 and github-actions[bot] authored Jan 7, 2025
1 parent 704523c commit 655b3ef
Show file tree
Hide file tree
Showing 2 changed files with 359 additions and 292 deletions.
358 changes: 358 additions & 0 deletions onnxruntime/python/tools/transformers/profile_result_processor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,358 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------

"""This profiler result processor print out the kernel time spent on each Node of the model.
Example of importing profile result file from onnxruntime_perf_test:
python profile_result_processor.py --input profile_2021-10-25_12-02-41.json
"""

import argparse
import json

_NODES_TYPE_CONTAINING_SUBGRAPH = frozenset(("Scan", "Loop", "If"))


def parse_arguments(argv=None):
parser = argparse.ArgumentParser()

parser.add_argument(
"-i",
"--input",
required=False,
type=str,
help="Set the input file for reading the profile results",
)

parser.add_argument(
"--threshold",
required=False,
type=float,
default=0.01,
help="Threshold of run time ratio among all nodes. Nodes with larger ratio will show in top expensive nodes.",
)

parser.add_argument(
"--provider",
required=False,
type=str,
default="cuda",
help="Execution provider to use",
)

parser.add_argument(
"--kernel_time_only",
required=False,
action="store_true",
help="Only include the kernel time and no fence time",
)

parser.set_defaults(kernel_time_only=False)

parser.add_argument("-v", "--verbose", required=False, action="store_true")
parser.set_defaults(verbose=False)

return parser.parse_args(argv)


def load_profile_json(profile_file):
print(f"loading profile output {profile_file} ...")

with open(profile_file) as opened_file:
sess_time = json.load(opened_file)

assert isinstance(sess_time, list)
return sess_time


def parse_kernel_results(sess_time, threshold=0):
"""Parse profile data and output nodes in two sections - nodes in the original order, and top expensive nodes.
Args:
sess_time (List[Dict]): profile data
threshold (int, optional): Minimum ratio of duration among all. Defaults to 0.
Returns:
List[str]: lines of string for output.
"""
kernel_name_to_op_name = {}
kernel_time = {}
kernel_freq = {}
total = 0
session_init = False
for item in sess_time:
# Skip all MemcpyHostToDevice before session_initialization
if item["cat"] == "Session" and item["name"] == "session_initialization":
session_init = True
if not session_init:
continue

if item["cat"] == "Kernel" and "dur" in item and "args" in item and "op_name" in item["args"]:
kernel_name = item["name"]

op_name = item["args"]["op_name"]
if op_name in _NODES_TYPE_CONTAINING_SUBGRAPH:
continue

# Handle MemcpyHostToDevice and MemcpyDeviceToHost here
if not op_name:
op_name = f"({kernel_name})"

if kernel_name in kernel_time:
kernel_time[kernel_name] += item["dur"]
kernel_freq[kernel_name] += 1
else:
kernel_time[kernel_name] = item["dur"]
kernel_freq[kernel_name] = 1
kernel_name_to_op_name[kernel_name] = op_name

total += item["dur"]

if not kernel_time:
return ["No kernel record found!"]

# Output items with run time ratio > thresholds, and sorted by duration in the descending order.
lines = []
lines.append(f"\nTop expensive kernels with Time% >= {threshold * 100:.2f}:")
lines.append("-" * 64)
lines.append("Total(μs)\tTime%\tCalls\tAvg(μs)\tKernel")
for kernel_name, duration in sorted(kernel_time.items(), key=lambda x: x[1], reverse=True):
ratio = duration / total
if ratio < threshold:
continue

calls = kernel_freq[kernel_name]
avg_time = duration / float(calls)
lines.append(f"{duration:10d}\t{ratio * 100.0:5.2f}\t{calls:5d}\t{avg_time:8.1f}\t{kernel_name}")

# Group by operator
op_time = {}
for kernel_name, op_name in kernel_name_to_op_name.items():
duration = kernel_time[kernel_name]
if op_name in op_time:
op_time[op_name] += duration
else:
op_time[op_name] = duration

lines.append("\nGroup kernel time by operator:")
lines.append("-" * 64)
lines.append("Total(μs)\tTime%\tOperator")
for op_name, duration in sorted(op_time.items(), key=lambda x: x[1], reverse=True):
ratio = duration / total
lines.append(f"{duration:10d}\t{ratio * 100.0:5.2f}\t{op_name}")

return lines


def parse_node_results(sess_time, kernel_time_only=False, threshold=0):
"""Parse profile data and output nodes in two sections - nodes in the original order, and top expensive nodes.
Args:
sess_time (List[Dict]): profile data
kernel_time_only (bool, optional): Only include items for kernel time. Defaults to False.
threshold (int, optional): Minimum ratio of duration among all. Defaults to 0.
Returns:
List[str]: lines of string for output.
"""
node_name_list = []
node_time = {}
node_freq = {}
node_provider = {}
total = 0
for item in sess_time:
if item["cat"] == "Node" and "dur" in item and "args" in item and "op_name" in item["args"]:
node_name = (
item["name"].replace("_kernel_time", "").replace("_fence_before", "").replace("_fence_after", "")
)

if "provider" in item["args"]:
if item["args"]["provider"] == "CPUExecutionProvider":
device = "CPU"
elif item["args"]["provider"] == "CUDAExecutionProvider":
device = "CUDA"
elif item["args"]["provider"] == "DmlExecutionProvider":
device = "DML"

if node_name not in node_provider:
node_provider[node_name] = device
else:
assert node_provider[node_name] == device
elif kernel_time_only:
continue

op_name = item["args"]["op_name"]
if op_name in _NODES_TYPE_CONTAINING_SUBGRAPH:
continue

if node_name in node_time:
node_time[node_name] += item["dur"]
node_freq[node_name] += 1
else:
node_time[node_name] = item["dur"]
node_freq[node_name] = 1
node_name_list.append(node_name)

total += item["dur"]

# Output items in the original order.
lines = [
"\nNodes in the original order:",
"-" * 64,
"Total(μs)\tTime%\tAcc %\tAvg(μs)\tCalls\tProvider\tNode",
]
before_percentage = 0.0
for node_name in node_name_list:
duration = node_time[node_name]
calls = node_freq[node_name]
avg_time = duration / float(calls)
percentage = (duration / total) * 100.0
provider = node_provider.get(node_name, "")
before_percentage += percentage
lines.append(
f"{duration:10d}\t{percentage:5.2f}\t{before_percentage:5.2f}\t{avg_time:8.1f}\t{calls:5d}\t{provider:8s}\t{node_name}"
)

# Output items with run time ratio > thresholds, and sorted by duration in the descending order.
lines.append(f"\nTop expensive nodes with Time% >= {threshold * 100:.2f}:")
lines.append("-" * 64)
lines.append("Total(μs)\tTime%\tAvg(μs)\tCalls\tProvider\tNode")
for node_name, duration in sorted(node_time.items(), key=lambda x: x[1], reverse=True):
ratio = duration / total
if ratio < threshold:
continue

calls = node_freq[node_name]
avg_time = duration / float(calls)
percentage = (duration / total) * 100.0
provider = node_provider.get(node_name, "")
lines.append(f"{duration:10d}\t{percentage:5.2f}\t{avg_time:8.1f}\t{calls:5d}\t{provider:8s}\t{node_name}")

return lines


def group_node_results(sess_time):
"""Group results by operator name.
Args:
sess_time (List[Dict]): profile data
Returns:
List[str]: lines of string for output.
"""
op_kernel_time = {}
op_kernel_records = {}
total_kernel_time = 0

provider_op_kernel_time = {}
provider_op_kernel_records = {}
provider_kernel_time = {}

op_fence_time = {}
total_fence_time = 0

provider_counter = {}
for item in sess_time:
if item["cat"] == "Node" and "dur" in item and "args" in item and "op_name" in item["args"]:
op_name = item["args"]["op_name"]

# TODO: shall we have a separated group for nodes with subgraph?
if op_name in _NODES_TYPE_CONTAINING_SUBGRAPH:
continue

if "provider" not in item["args"]:
if "fence" in item["name"]:
if op_name in op_fence_time:
op_fence_time[op_name] += item["dur"]
else:
op_fence_time[op_name] = item["dur"]
total_fence_time += item["dur"]
continue

provider = item["args"].get("provider", "")
if provider in provider_counter:
provider_counter[provider] += 1
else:
provider_counter[provider] = 1

key = f"{provider}:{op_name}"
if key in provider_op_kernel_time:
provider_op_kernel_time[key] += item["dur"]
provider_op_kernel_records[key] += 1
else:
provider_op_kernel_time[key] = item["dur"]
provider_op_kernel_records[key] = 1

if provider in provider_kernel_time:
provider_kernel_time[provider] += item["dur"]
else:
provider_kernel_time[provider] = item["dur"]

if op_name in op_kernel_time:
op_kernel_time[op_name] += item["dur"]
op_kernel_records[op_name] += 1
else:
op_kernel_time[op_name] = item["dur"]
op_kernel_records[op_name] = 1

total_kernel_time += item["dur"]

lines = ["", "Grouped by operator"]
lines.append("-" * 64)
lines.append("Total(μs)\tTime%\tKernel(μs)\tKernel%\tCalls\tAvgKernel(μs)\tFence(μs)\tOperator")
for op_name, kernel_time in sorted(op_kernel_time.items(), key=lambda x: x[1], reverse=True):
fence_time = op_fence_time.get(op_name, 0)
kernel_time_ratio = kernel_time / total_kernel_time
total_time = kernel_time + fence_time
time_ratio = total_time / (total_kernel_time + total_fence_time)
kernel_calls = op_kernel_records[op_name]
avg_kernel_time = kernel_time / kernel_calls
lines.append(
f"{total_time:10d}\t{time_ratio * 100.0:5.2f}\t{kernel_time:11d}\t{kernel_time_ratio * 100.0:5.2f}\t{kernel_calls:5d}\t{avg_kernel_time:14.1f}\t{fence_time:10d}\t{op_name}"
)

lines += ["", "Grouped by provider + operator"]
lines.append("-" * 64)
lines.append("Kernel(μs)\tProvider%\tCalls\tAvgKernel(μs)\tProvider\tOperator")
for key, kernel_time in sorted(provider_op_kernel_time.items(), key=lambda x: x[1], reverse=True):
parts = key.split(":")
provider = parts[0]
op_name = parts[1]
short_ep = provider.replace("ExecutionProvider", "")
calls = provider_op_kernel_records[key]
avg_kernel_time = kernel_time / calls
provider_time_ratio = kernel_time / provider_kernel_time[provider]
lines.append(
f"{kernel_time:10d}\t{provider_time_ratio * 100.0:9.2f}\t{calls:5d}\t{avg_kernel_time:14.1f}\t{short_ep:8s}\t{op_name}"
)

return lines


def process_results(profile_file, args):
profile_records = load_profile_json(profile_file)

lines = parse_kernel_results(profile_records, args.threshold)

lines += parse_node_results(profile_records, args.kernel_time_only, args.threshold)

lines += group_node_results(profile_records)

return lines


if __name__ == "__main__":
arguments = parse_arguments()
print("Arguments", arguments)

from benchmark_helper import setup_logger

setup_logger(arguments.verbose)

profile_file = arguments.input

results = process_results(profile_file, arguments)

for line in results:
print(line)
Loading

0 comments on commit 655b3ef

Please sign in to comment.