Skip to content

Commit

Permalink
Update file
Browse files Browse the repository at this point in the history
  • Loading branch information
ksaravan910 authored Feb 19, 2020
1 parent 816b456 commit e955d9a
Showing 1 changed file with 147 additions and 129 deletions.
276 changes: 147 additions & 129 deletions my-scraper.py
Original file line number Diff line number Diff line change
@@ -1,163 +1,181 @@
import csv
import os
import re

from venv import logger
from bs4 import BeautifulSoup
from html.parser import HTMLParser
import requests
import json
from pprint import pprint
from datetime import datetime, timezone
import dateutil.parser



# increase offset by 20 on each iteration (eg. 20, 40, 60)
# last iteration will have offset=980 (cant go past 1000)
search_url = 'https://drop.com/api/feed;contentTypes=drops;endpoint=dynamicFeed;offset=20;query=*?lang=en-US&returnMeta=true'

# download the raw JSON
search_raw = requests.get(search_url).text

# parse it into a dict
search_dict = json.loads(search_raw)
# gets just the prods
catalog_dict = search_dict['data']['contentData']['dropSummaries']
# pprint(prods_dict)
# key_list = list(prods_dict)
# first_key = key_list[0]
# first_prod = prods_dict[list(prods_dict)[0]]
# pprint(first_prod)

for key, value in catalog_dict.items():
def main_page_scraper(key, value):
prod_id = key
# print(value)
print('prod_id {}'.format(prod_id))
print('product id {}'.format(prod_id))
prod_name = value['name']
print(prod_name)
prod_slug = value['url']
# print(prod_slug)
prod_slug = value['url'] # we do not need to store this in the final csv
prod_url = 'https://drop.com/buy/' + prod_slug
print(prod_url)
print('product url {}'.format(prod_url))
prod_image = value['thumbImage']
# print(prod_image)

# to do: we will get the prod price by following the url and grabbing it from the product page
# to do: we will get the prod gallery by following the url and grabbing it from the product page

prod_category_id = value['primaryCategoryId']
# print(prod_category_id)

# to do: find what the category ids correspond to by following the url and grabbing the first category from the product page (eg. 8 = mechnical keyboards)

# prods created by massdrop, store the raw values in the CSV (1 = true, 0 = false)
prod_active = value['isActive']
prod_bestInCategory = value['isBestOf']
prod_custom = value['isCustom']
prod_new = value['isNewArrival']
prod_maxDropSize = value['maxDropSize']
prod_numFavourites = value['numFavorites']
prod_numReviews = value['numReviews']
prod_recommendedYes = value['recommendedYesResponses']
prod_recommendedTotal = value['recommendedTotalResponses']

try:
prod_freeShipping = value['badges'][1]['type']
except:
prod_freeShipping = 'paidShipping'
# print(prod_freeShipping)

prod_totalSold = value['totalSold']
prod_averageReviewScore = value['averageReviewScore']
# stores the product's collections as a list of IDs, we wont know what these numbers mean until we dig deeper
# to do: find where these collections are stored on the site
prod_collections = value['collections']

# this feature is useless to us since its not fixed, will change at some point in the future
# prod_developmentPhase = value['developmentPhase']
prod_refundable = value['isReturnable']
prod_dropStart = value['startAt']
start_datetime = dateutil.parser.parse(prod_dropStart)
prod_is_active = value['isActive']
prod_is_best_in_category = value['isBestOf']
prod_is_custom = value['isCustom']
prod_is_new = value['isNewArrival']
prod_max_drop_size = value['maxDropSize']
prod_num_favourites = value['numFavorites']
prod_num_reviews = value['numReviews']
prod_dev_phase = value['developmentPhase']
print('product dev phase: {}'.format(prod_dev_phase))
prod_recommended_yes = value['recommendedYesResponses']
prod_recommended_total = value['recommendedTotalResponses']
prod_total_sold = value['totalSold']
prod_average_review_score = value['averageReviewScore']
prod_collection_ids = value['collections'] # stores the product's collections as a list of IDs, we wont know what these numbers mean until we dig deeper
prod_is_refundable = value['isReturnable']
prod_drop_start = value['startAt']
start_datetime = dateutil.parser.parse(prod_drop_start)
today_datetime = datetime.now(timezone.utc)
# calculates how long a drop has been active by taking the difference between today's date and the startAt date (not including today's date)
prod_daysActive = abs((today_datetime - start_datetime).days)
# print(prod_daysActive)

#####################################################
# this section scrapes info from the product page
# info we will collect
# msrp price
# massdrop price
# specs (if available)/details
# discount: calculate as difference between retail price and massdrop price
# image gallery
# full description
# recommendation percentage (previously recommendation ratio)
# color/style options: check if key called layout with value hoverGallery exists, grab the titles in the images array
# scrape this url: https://drop.com/api/drops;dropUrl=<prod_id>;isPreview=false;noCache=false;withPrices=true?lang=en-US&returnMeta=true
prod_url = 'https://drop.com/api/drops;dropUrl={};isPreview=false;noCache=false;withPrices=true?lang=en-US&returnMeta=true'.format(prod_id)
# print(prod_url)
# download the raw JSON
prod_raw = requests.get(prod_url).text
# parse it into a dict
prod_dict = json.loads(prod_raw)
# print this for testing
print(prod_dict)
# note that any custom massdrop products wont have an msrp price since theyre only sold on the massdrop site (you are already getting the best price)
prod_msrpPrice = prod_dict['data']['msrpPrice']
# print('prod_msrpPrice {}'.format(prod_msrpPrice))
prod_massdropPrice = prod_dict['data']['currentPrice']
# print('prod_massdropPrice {}'.format(prod_massdropPrice))

content_dict = prod_dict['data']['description']['content']
# prints the dict that contains specs as heading
prod_days_active = abs((today_datetime - start_datetime).days) # calculates how long a drop has been active by taking the difference between today's date and the startAt date (not including today's date)
prod_attrs = {'prod_id':prod_id, 'prod_name':prod_name, 'prod_url':prod_url, 'prod_image':prod_image, 'prod_category_id':prod_category_id, 'prod_is_active':prod_is_active,
'prod_is_best_in_category':prod_is_best_in_category, 'prod_is_custom':prod_is_custom, 'prod_is_new':prod_is_new, 'prod_max_drop_size':prod_max_drop_size,
'prod_num_favourites':prod_num_favourites, 'prod_num_reviews':prod_num_reviews, 'prod_dev_phase':prod_dev_phase, 'prod_recommended_yes':prod_recommended_yes,
'prod_recommended_total':prod_recommended_total, 'prod_total_sold':prod_total_sold, 'prod_average_review_score':prod_average_review_score,
'prod_collection_ids':prod_collection_ids, 'prod_is_refundable':prod_is_refundable, 'prod_drop_start':prod_drop_start, 'prod_days_active':prod_days_active}
if prod_attrs['prod_dev_phase'] != 1:
product_page_scraper(prod_attrs)
checkout_page_scraper(prod_attrs)

return prod_attrs


# Scrapes info from the product page
## url = https://drop.com/buy/<prod_slug>
## msrp price
## massdrop price
## specs (if available)/details
## discount: calculate as difference between retail price and massdrop price
## image gallery
## description
## recommendation percentage
## color/style options
def product_page_scraper(row_values):
prod_varieties = []
prod_gallery = []
prod_id = row_values['prod_id']
xhr_url = 'https://drop.com/api/drops;dropUrl={};isPreview=false;noCache=false;withPrices=true?lang=en-US&returnMeta=true'.format(prod_id)
prod_raw = requests.get(xhr_url).text # download the raw json
prod_dict = json.loads(prod_raw) # parse it into a dict
prod_msrp_price = prod_dict['data']['msrpPrice']

prod_massdrop_price = prod_dict.get('data', {}).get('currentPrice')
prod_category_name = prod_dict['data']['primaryCategoryName']
prod_is_promo = prod_dict['data']['isPromo']
content_dict = prod_dict.get('data', {}).get('description', {}).get('content')
print(prod_dict['data']['description'])

for dic in content_dict:
if 'Specs' in dic.values():
# replace all instances of <li> or </li> with nothing
dic['copy'] = dic['copy'].replace('\n', '')
dic['copy'] = dic['copy'].replace('\t', '')
# print(dic['copy'])
# remove white spaces between > <
# clean_specs = re.sub(r"[^\w\s]", '', dic['copy'])
soup = BeautifulSoup(dic['copy'], features="html.parser")
text = soup.get_text(',')
# specs_list = text.split(',')
specs_list = [x.strip() for x in text.split(',')]
# remove blank items from list
for s in specs_list:
for s in specs_list: # remove blank items from list
if s == '':
specs_list.remove(s)
# print(specs_list)

if (prod_msrpPrice != None):
prod_discount = prod_msrpPrice - prod_massdropPrice
if prod_msrp_price and prod_massdrop_price is not None:
prod_discount = prod_msrp_price - prod_massdrop_price
else:
prod_discount = 0
# print('prod_discount {}'.format(prod_discount))

# prod_gallery =
##########################################
# this sections scrapes info from the product shipping page
# follow this url: https://drop.com/payment/<prod_id> and scrape this XHR file https://drop.com/api/orderTotal;commitType=2;country=US;dropId=<prod_id>;orders=%5B%7B%22options%22%3A%5B898470%5D%2C%22customOptions%22%3A%5B%5D%2C%22quantity%22%3A1%7D%5D;postalCode=;state=?lang=en-US&returnMeta=true
# info to collect
# final price

for list_item in content_dict:
if 'images' in list_item:
for image in list_item['images']:
prod_gallery.append(image['src'])

soup = BeautifulSoup(content_dict[0]['copy'], features="html.parser")
prod_description = soup.get_text()
prod_recommended_total = row_values['prod_recommended_total']
prod_recommended_yes = row_values['prod_recommended_yes']

if prod_recommended_total != 0:
prod_recommended_pc = prod_recommended_yes / prod_recommended_total
else:
prod_recommended_pc = 0

try:
for i in content_dict:
if i['layout'] == 'hoverGallery':
for j in i['images']:
prod_varieties.append(j['title'])
except KeyError as error:
logger.info(error)

row_values.update({'prod_msrp_price':prod_msrp_price, 'prod_massdrop_price':prod_massdrop_price, 'prod_category_name':prod_category_name,
'prod_is_promo':prod_is_promo, 'prod_discount':prod_discount, 'prod_gallery':prod_gallery, 'prod_description':prod_description,
'prod_recommended_pc':prod_recommended_pc, 'prod_varities':prod_varieties})


# Scrapes info from the product checkout page
## url = https://drop.com/payment/<prod_id>
## final price
## shipping cost
## taxes
def checkout_page_scraper(row_values):
prod_id = row_values['prod_id']
payment_url = 'https://drop.com/api/orderTotal;commitType=2;country=US;dropId={};' \
'orders=%5B%7B%22options%22%3A%5B898470%5D%2C%22customOptions%22%3A%5B%5D%2C%22quantity%22%3A1%7D%5D;' \
'postalCode=;state=?lang=en-US&returnMeta=true'.format(prod_id)
# print(payment_url)
# download the raw JSON
# download the raw json
payment_raw = requests.get(payment_url).text
# parse it into a dict
payment_dict = json.loads(payment_raw)
# print(payment_dict)
prod_totalCost = payment_dict['data']['total']
# print('prod_totalCost {}'.format(prod_totalCost))
# if a file with this name already exists remove it, otherwise create it and add headers and write to it
try:
os.remove('massdrop-products.csv')
except OSError:
file = csv.writer(open('massdrop-products.csv', 'a'))
# to do: update this line
file.writerow(['ID', 'Name', 'Link', 'Image', 'Price', 'PrimaryCategoryId', 'PrimaryCategoryName', 'Custom'])
# to do: update this line
file.writerow([prod_id])
prod_total_cost = payment_dict.get('data', {}).get('total')
prod_taxes = payment_dict.get('data', {}).get('taxRateTotal')
prod_shipping = payment_dict.get('data', {}).get('shipping')
row_values.update({'prod_total_cost':prod_total_cost, 'prod_taxes':prod_taxes, 'prod_shipping':prod_shipping})


def write_to_file(prod_attrs):
output_file = 'massdrop-products.csv'
# TODO fix the headings so that they match with the data order
if os.path.exists(output_file):
file = open(output_file, 'a', newline='', encoding='utf-8') # append if file already exists
else:
file = open(output_file, 'w', newline='', encoding='utf-8') # make a new file if not
writer = csv.DictWriter(file, fieldnames=list(prod_attrs.keys())) # write headers to new file
writer.writeheader()

write_outfile = csv.writer(file)
write_outfile.writerow(list(prod_attrs.values()))
return file


def main():
offset_counter = 0 # keeps track of how many dictionaries there are
if os.path.exists('massdrop-products.csv'):
os.remove('massdrop-products.csv') # deletes the file on every run so we have a clean slate
else:
print('Nothing to delete')

for offset in range(20, 1000, 20):
offset_counter = offset_counter + 1

search_url = 'https://drop.com/api/feed;contentTypes=drops;endpoint=dynamicFeed;offset={' \
'};query=*?lang=en-US&returnMeta=true'.format(offset)
search_raw = requests.get(search_url).text # downloads the raw json
search_dict = json.loads(search_raw) # converts from json string to python dictionary

catalog_dict = search_dict['data']['contentData']['dropSummaries'] # stores just the products

for key, value in catalog_dict.items(): # iterates through key value pairs in the dictionary
prod_attrs = main_page_scraper(key, value)
print('Writing to file: {}'.format(prod_attrs))
outfile = write_to_file(prod_attrs)

outfile.close()


main()

0 comments on commit e955d9a

Please sign in to comment.