Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

T h studies #20

Open
wants to merge 11 commits into
base: legacyAnalysis
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
new netConfig
pekramer committed Nov 13, 2019
commit de8354308af576e4be954f4a2066d04784394c98
137 changes: 130 additions & 7 deletions train_scripts/net_configs.py
Original file line number Diff line number Diff line change
@@ -28,34 +28,47 @@
"earlystopping_epochs": 50,
}

config_dict["ttZ_2018_final"] = {
config_dict["ttZ_2018_4node"] = {
"layers": [50,50],
"loss_function": "categorical_crossentropy",
"Dropout": 0.4,
"L2_Norm": 1e-4,
"L2_Norm": 1e-5,
"batch_size": 200,
"optimizer": optimizers.Adagrad(),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 10,
}


config_dict["ttZ_2018_4node_v4"] = {
"layers": [50,50],
"loss_function": "categorical_crossentropy",
"Dropout": 0.4,
"L2_Norm": 1e-4,
"batch_size": 100,
"optimizer": optimizers.Adagrad(),
"activation_function": "leakyrelu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.1,
"earlystopping_epochs": 50,
}


config_dict["ttH_2017"] = {
"layers": [100,100,100],
config_dict["STXS_2017"] = {
"layers": [500,250,100],
"loss_function": "categorical_crossentropy",
"Dropout": 0.50,
"L2_Norm": 1e-5,
"batch_size": 4096,
"batch_size": 100,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 100,
}

config_dict["Legacy_ttH_2017"] = {
config_dict["ttH_2017"] = {
"layers": [100,100,100],
"loss_function": "categorical_crossentropy",
"Dropout": 0.50,
@@ -94,6 +107,56 @@
"earlystopping_epochs": 100,
}

config_dict["ttZ_2018"] = {
"layers": [300,200,100],
"loss_function": "categorical_crossentropy",
"Dropout": 0.4,
"L2_Norm": 1e-5,
"batch_size": 4096,
"optimizer": optimizers.Adadelta(),
"activation_function": "selu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 100,
}

config_dict["ttZ_2018_v2"] = {
"layers": [300,200,100,50],
"loss_function": "categorical_crossentropy",
"Dropout": 0.4,
"L2_Norm": 1e-5,
"batch_size": 5000,
"optimizer": optimizers.Adadelta(),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 50,
}
config_dict["ttZ_2018_v3"] = {
"layers": [200,100,50],
"loss_function": "mean_squared_error",
"Dropout": 0.3,
"L2_Norm": 1e-5,
"batch_size": 5000,
"optimizer": optimizers.Adadelta(),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 50,
}
config_dict["meme"] = {
"layers": [],
"loss_function": "mean_squared_error",
"Dropout": 0.,
"L2_Norm": 0.,
"batch_size": 5000,
"optimizer": optimizers.Adadelta(),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.05,
"earlystopping_epochs": 50,
}


config_dict["dnn_config"] = {
"layers": [20],
@@ -183,3 +246,63 @@
"earlystopping_percentage": 0.02,
"earlystopping_epochs": 100,
}
config_dict["tH"] = {
"layers": [100,100,100],
"loss_function": "categorical_crossentropy",
"Dropout": 0.50,
"L2_Norm": 1e-5,
"batch_size": 4096,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.02,
"earlystopping_epochs": 100,
}
config_dict["ttH_STXS"] = {
"layers": [100,100,100,100],
"loss_function": "categorical_crossentropy",
"Dropout": 0.50,
"L2_Norm": 1e-5,
"batch_size": 4096,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "Softmax",
"earlystopping_percentage": 0.02,
"earlystopping_epochs": 100,
}
config_dict["regress_STXS"] = {
"layers": [2500],
"loss_function": "mean_squared_error",
"Dropout": 0.88,
"L2_Norm": 1e-7,
"batch_size": 100,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "linear",
"earlystopping_percentage": 0.002,
"earlystopping_epochs": 100,
}
config_dict["regress"] = {
"layers": [25],
"loss_function": "mean_squared_error",
"Dropout": 0.5,
"L2_Norm": 1e-5,
"batch_size": 100,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "linear",
"earlystopping_percentage": 0.002,
"earlystopping_epochs": 100,
}
config_dict["regression"] = {
"layers": [500,500],
"loss_function": "mean_squared_error",
"Dropout": 0.5,
"L2_Norm": 1e-5,
"batch_size": 100,
"optimizer": optimizers.Adam(1e-4),
"activation_function": "elu",
"output_activation": "linear",
"earlystopping_percentage": 0.002,
"earlystopping_epochs": 100,
}
21 changes: 15 additions & 6 deletions train_scripts/ttH17_train.py
Original file line number Diff line number Diff line change
@@ -12,10 +12,12 @@
filedir = os.path.dirname(os.path.realpath(__file__))
basedir = os.path.dirname(filedir)
sys.path.append(basedir)
sys.path.append(basedir+"/preprocessing/root2pandas")

# import class for DNN training
import DRACO_Frameworks.DNN.DNN as DNN
import DRACO_Frameworks.DNN.data_frame as df
import preprocessing_utils as pputils

options.initArguments()

@@ -24,12 +26,19 @@

# define all samples
# only ttH sample needs even/odd splitting for 2017 MC
input_samples.addSample(options.getDefaultName("ttH"), label = "ttH", normalization_weight = options.getNomWeight())
input_samples.addSample(options.getDefaultName("ttbb"), label = "ttbb", normalization_weight = 1.)
input_samples.addSample(options.getDefaultName("tt2b"), label = "tt2b", normalization_weight = 1.)
input_samples.addSample(options.getDefaultName("ttb"), label = "ttb", normalization_weight = 1.)
input_samples.addSample(options.getDefaultName("ttcc"), label = "ttcc", normalization_weight = 1.)
input_samples.addSample(options.getDefaultName("ttlf"), label = "ttlf", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("ttH"), label = "ttH", normalization_weight = options.getNomWeight())
#input_samples.addSample(options.getDefaultName("ttbb"), label = "ttbb", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("tt2b"), label = "tt2b", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("ttcc"), label = "ttcc", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("ttlf"), label = "ttlf", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("ttb"), label = "ttb", normalization_weight = 1.)
#input_samples.addSample(options.getDefaultName("ttb_bb"), label = "ttb_bb", normalization_weight = 1.)

sampleDict = pputils.readSampleFile(options.getInputDirectory())
print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
print sampleDict
print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
pputils.addToInputSamples(input_samples, sampleDict)

if options.isBinary():
input_samples.addBinaryLabel(options.getSignal(), options.getBinaryBkgTarget())