-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
396 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,396 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Problem Set 2: Job Search" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"A Python solution to the finite life Job Search problem.\n", | ||
"\n", | ||
"We start with some imports" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 151, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import quantecon as qe\n", | ||
"\n", | ||
"from numba import njit, prange\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"To keep the code simple, some variables will be global." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 152, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"T = 65\n", | ||
"w_vals = (7, 10, 11)\n", | ||
"p = (0.25, 0.5, 0.25)\n", | ||
"p_cdf = np.cumsum(p)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Here's a little function to draw from $p$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 153, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"@njit\n", | ||
"def draw_from_offer_distribution():\n", | ||
" return qe.random.draw(p_cdf)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"\n", | ||
"The next function computes values and policies.\n", | ||
"\n", | ||
"The possible wage values are $w_0, w_1, w_2$\n", | ||
"\n", | ||
"The value functions $v_t(w)$ are returned as a matrix $V$ of the form\n", | ||
"\n", | ||
"$$\n", | ||
"V = \n", | ||
"\\begin{pmatrix}\n", | ||
" v_0(w_0) & v_0(w_1) & v_0(w_2) \\\\\n", | ||
" v_1(w_0) & v_1(w_1) & v_1(w_2) \\\\\n", | ||
" & \\vdots & \\\\\n", | ||
" v_t(w_0) & v_t(w_1) & v_t(w_2) \\\\\n", | ||
" & \\vdots & \n", | ||
"\\end{pmatrix}\n", | ||
"$$\n", | ||
"\n", | ||
"The policy functions, which give the optimal choice at each state and time, have the interpretation\n", | ||
"\n", | ||
"$$ \\sigma_t(w) =\n", | ||
"\\begin{cases}\n", | ||
" 1 & \\text{if accept $w$ at time $t$} \\\\\n", | ||
" 0 & \\text{otherwise}\n", | ||
"\\end{cases}\n", | ||
"$$\n", | ||
"\n", | ||
"The policy functions are returned as a matrix $\\sigma$ of the form\n", | ||
"\n", | ||
"$$\n", | ||
"\\sigma = \n", | ||
"\\begin{pmatrix}\n", | ||
" \\sigma_0(w_0) & \\sigma_0(w_1) & \\sigma_0(w_2) \\\\\n", | ||
" \\sigma_1(w_0) & \\sigma_1(w_1) & \\sigma_1(w_2) \\\\\n", | ||
" & \\vdots & \\\\\n", | ||
" \\sigma_t(w_0) & \\sigma_t(w_1) & \\sigma_t(w_2) \\\\\n", | ||
" & \\vdots & \n", | ||
"\\end{pmatrix}\n", | ||
"$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 154, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"@njit\n", | ||
"def compute_values_and_policies(β=0.96, c=8):\n", | ||
"\n", | ||
" n = len(w_vals) \n", | ||
" V = np.empty((T, n))\n", | ||
" σ = np.zeros((T, n), dtype=np.int64)\n", | ||
"\n", | ||
" t = T-1\n", | ||
" for i, w in enumerate(w_vals):\n", | ||
" V[t, i] = max(c, w) \n", | ||
" σ[t, i] = (w > c)\n", | ||
"\n", | ||
" while t > 0:\n", | ||
" for i, w in enumerate(w_vals):\n", | ||
" \n", | ||
" accept_val = w * (1 - β**(T-t+1)) / (1 - β)\n", | ||
" EV = 0.0\n", | ||
" for j in range(n):\n", | ||
" EV += V[t, j] * p[j]\n", | ||
" continue_val = c + β * EV\n", | ||
" \n", | ||
" if accept_val > continue_val:\n", | ||
" σ[t-1, i] = 1\n", | ||
" V[t-1, i] = accept_val\n", | ||
" else:\n", | ||
" V[t-1, i] = continue_val\n", | ||
" \n", | ||
" t -= 1\n", | ||
"\n", | ||
" return V, σ" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Here's jitted code that simulates the life of one agent, recording the wage that they accept at and their age when they accept." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 166, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"@njit\n", | ||
"def sim_life(σ):\n", | ||
" for t in range(T):\n", | ||
" i = draw_from_offer_distribution()\n", | ||
" if σ[t, i] == 1:\n", | ||
" accepted_wage = w_vals[i]\n", | ||
" start_work_age = t\n", | ||
" return accepted_wage, start_work_age+1\n", | ||
" \n", | ||
" start_work_age = T\n", | ||
" accepted_wage = 0\n", | ||
" return accepted_wage, start_work_age" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Here's a function that simulates the lives of many agents and takes an average over their statistics.\n", | ||
"\n", | ||
"Parallelization is not implemented because the individual calculations are so short." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 167, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"@njit\n", | ||
"def sim_stats(σ, m=1_000_000):\n", | ||
" wage_mean = 0\n", | ||
" age_mean = 0\n", | ||
" for i in range(m):\n", | ||
" accepted_wage, start_work_age = sim_life(σ)\n", | ||
" age_mean += start_work_age\n", | ||
" wage_mean += accepted_wage\n", | ||
" return wage_mean / m, age_mean / m\n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now let's actually compute the optimal policies and simulate some agents to calculate statistics." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 178, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"V, σ = compute_values_and_policies()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 179, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"CPU times: user 153 ms, sys: 0 ns, total: 153 ms\n", | ||
"Wall time: 151 ms\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%%time\n", | ||
"\n", | ||
"wage_mean, age_mean = sim_stats(σ)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 180, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"11.0" | ||
] | ||
}, | ||
"execution_count": 180, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"wage_mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 181, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"3.999721" | ||
] | ||
}, | ||
"execution_count": 181, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"age_mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Total time to simulate for 1,000,000 agents is a few hundred ms on my machine." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"What happens when we change $c$?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 182, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"V, σ = compute_values_and_policies(c=4.5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 183, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"CPU times: user 103 ms, sys: 0 ns, total: 103 ms\n", | ||
"Wall time: 101 ms\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%%time\n", | ||
"\n", | ||
"wage_mean, age_mean = sim_stats(σ)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 184, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"10.71835" | ||
] | ||
}, | ||
"execution_count": 184, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"wage_mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 185, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"2.876221" | ||
] | ||
}, | ||
"execution_count": 185, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"age_mean" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |