Skip to content

Commit

Permalink
Fix keyword handling for flowMC.
Browse files Browse the repository at this point in the history
Also makes a new release.

PiperOrigin-RevId: 606642479
  • Loading branch information
ColCarroll authored and The bayeux Authors committed Feb 13, 2024
1 parent a77a136 commit cfe94bd
Show file tree
Hide file tree
Showing 6 changed files with 192 additions and 42 deletions.
8 changes: 7 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,11 @@ To release a new version (e.g. from `1.0.0` -> `2.0.0`):

## [Unreleased]

## [0.1.7] - 2024-02-13

### Add SNAPER HMC from TFP
### Fix flowMC keyword handling

## [0.1.6] - 2024-02-01

### Add samplers from flowMC
Expand Down Expand Up @@ -50,7 +55,8 @@ To release a new version (e.g. from `1.0.0` -> `2.0.0`):

### Initial release

[Unreleased]: https://github.com/jax-ml/bayeux/compare/v0.1.5...HEAD
[Unreleased]: https://github.com/jax-ml/bayeux/compare/v0.1.7...HEAD
[0.1.7]: https://github.com/jax-ml/bayeux/releases/tag/v0.1.7
[0.1.6]: https://github.com/jax-ml/bayeux/releases/tag/v0.1.6
[0.1.5]: https://github.com/jax-ml/bayeux/releases/tag/v0.1.5
[0.1.4]: https://github.com/jax-ml/bayeux/releases/tag/v0.1.4
Expand Down
2 changes: 1 addition & 1 deletion bayeux/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

# A new PyPI release will be pushed everytime `__version__` is increased
# When changing this, also update the CHANGELOG.md
__version__ = '0.1.6'
__version__ = '0.1.7'

# Note: import <name> as <name> is required for names to be exported.
# See PEP 484 & https://github.com/google/jax/issues/7570
Expand Down
71 changes: 32 additions & 39 deletions bayeux/_src/mcmc/flowmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,17 +48,6 @@

def get_nf_model_kwargs(nf_model, n_features, kwargs):
"""Sets defaults and merges user-provided adaptation keywords."""
nf_model_kwargs, nf_model_required = shared.get_default_signature(
nf_model)
nf_model_kwargs.update(
{k: kwargs[k] for k in nf_model_kwargs if k in kwargs})
nf_model_kwargs.update(
{k: kwargs[k] for k in nf_model_required if k in kwargs})
nf_model_kwargs.setdefault("n_features", n_features)
nf_model_required.remove("key")
nf_model_required.remove("kwargs")
nf_model_required = nf_model_required - nf_model_kwargs.keys()

defaults = {
# RealNVP kwargs
"n_hidden": 100,
Expand All @@ -68,11 +57,15 @@ def get_nf_model_kwargs(nf_model, n_features, kwargs):
"num_bins": 8,
"hidden_size": [64, 64],
"spline_range": (-10.0, 10.0),
}
for key, value in defaults.items():
if key in nf_model_required:
nf_model_kwargs[key] = value
"n_features": n_features,
} | kwargs

nf_model_kwargs, nf_model_required = shared.get_default_signature(
nf_model)
nf_model_kwargs.update(
{k: defaults[k] for k in nf_model_required if k in defaults})
nf_model_required.remove("key")
nf_model_required.remove("kwargs")
nf_model_required = nf_model_required - nf_model_kwargs.keys()

if nf_model_required:
Expand All @@ -81,27 +74,30 @@ def get_nf_model_kwargs(nf_model, n_features, kwargs):
f"{','.join(nf_model_required)}. Probably file a bug, but "
"you can try to manually supply them as keywords."
)
nf_model_kwargs.update(
{k: defaults[k] for k in nf_model_kwargs if k in defaults})

return nf_model_kwargs


def get_local_sampler_kwargs(local_sampler, log_density, n_features, kwargs):
"""Sets defaults and merges user-provided adaptation keywords."""

kwargs["logpdf"] = log_density
sampler_kwargs, sampler_required = shared.get_default_signature(
local_sampler)
sampler_kwargs.setdefault("jit", True)
sampler_kwargs.update(
{k: kwargs[k] for k in sampler_required if k in kwargs})
sampler_required = sampler_required - sampler_kwargs.keys()

defaults = {
# HMC kwargs
"condition_matrix": jnp.eye(n_features),
"n_leapfrog": 10,
# Both
"step_size": 0.1,
}
"logpdf": log_density
} | kwargs

sampler_kwargs, sampler_required = shared.get_default_signature(
local_sampler)
sampler_kwargs.setdefault("jit", True)
sampler_kwargs.update(
{k: defaults[k] for k in sampler_required if k in defaults})
sampler_required = sampler_required - sampler_kwargs.keys()
if "params" in sampler_required:
sampler_kwargs["params"] = defaults
else:
Expand All @@ -120,15 +116,9 @@ def get_local_sampler_kwargs(local_sampler, log_density, n_features, kwargs):

def get_sampler_kwargs(sampler, n_features, kwargs):
"""Sets defaults and merges user-provided adaptation keywords."""
sampler_kwargs, sampler_required = shared.get_default_signature(sampler)
sampler_kwargs.update(
{k: kwargs[k] for k in sampler_required if k in kwargs})
sampler_kwargs.setdefault("data", {})
sampler_kwargs.setdefault("n_dim", n_features)
sampler_required = (sampler_required -
{"nf_model", "local_sampler", "rng_key_set", "kwargs"})
sampler_required = sampler_required - sampler_kwargs.keys()

# We support `num_chains` everywhere else, so support it here.
if "num_chains" in kwargs:
kwargs["n_chains"] = kwargs["num_chains"]
defaults = {
"n_loop_training": 5,
"n_loop_production": 5,
Expand All @@ -149,11 +139,14 @@ def get_sampler_kwargs(sampler, n_features, kwargs):
"output_thinning": 1,
"n_sample_max": 10_000,
"precompile": False,
"verbose": False}
for key, value in defaults.items():
if key not in sampler_kwargs:
sampler_kwargs[key] = value

"verbose": False,
"n_dim": n_features,
"data": {}} | kwargs
sampler_kwargs, sampler_required = shared.get_default_signature(sampler)
sampler_kwargs.update(
{k: defaults[k] for k in sampler_required if k in defaults})
sampler_required = (sampler_required -
{"nf_model", "local_sampler", "rng_key_set", "kwargs"})
sampler_required = sampler_required - sampler_kwargs.keys()

if sampler_required:
Expand All @@ -162,7 +155,7 @@ def get_sampler_kwargs(sampler, n_features, kwargs):
f"{','.join(sampler_required)}. Probably file a bug, but "
"you can try to manually supply them as keywords."
)
return sampler_kwargs
return defaults | sampler_kwargs


class _FlowMCSampler(shared.Base):
Expand Down
116 changes: 116 additions & 0 deletions bayeux/_src/mcmc/tfp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright 2024 The bayeux Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2024 The bayeux Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""NumPyro specific code."""

import arviz as az
from bayeux._src import shared
import jax
import numpy as np
import tensorflow_probability.substrates.jax as tfp


class SnaperHMC(shared.Base):
"""Implements SNAPER HMC [1] with step size adaptation.
[1]: Sountsov, P. & Hoffman, M. (2021). Focusing on Difficult Directions for
Learning HMC Trajectory Lengths. <https://arxiv.org/abs/2110.11576>
"""
name = "tfp_snaper_hmc"

def get_kwargs(self, **kwargs):
kwargs_with_defaults = {
"num_results": 1_000,
"num_chains": 8,
} | kwargs
snaper = tfp.experimental.mcmc.sample_snaper_hmc
snaper_kwargs, snaper_required = shared.get_default_signature(snaper)
snaper_kwargs.update({k: kwargs_with_defaults[k] for k in snaper_required
if k in kwargs_with_defaults})
snaper_required.remove("model")
# Initial state is handled internally
snaper_kwargs.pop("init_state")
# Seed set later
snaper_kwargs.pop("seed")

snaper_required = snaper_required - snaper_kwargs.keys()

if snaper_required:
raise ValueError(f"Unexpected required arguments: "
f"{','.join(snaper_required)}. Probably file a bug, but "
"you can try to manually supply them as keywords.")
snaper_kwargs.update({k: kwargs_with_defaults[k] for k in snaper_kwargs
if k in kwargs_with_defaults})
return {
snaper: snaper_kwargs,
"extra_parameters": {
"return_pytree": kwargs.get("return_pytree", False)
},
}

def __call__(self, seed, **kwargs):
snaper = tfp.experimental.mcmc.sample_snaper_hmc
init_key, sample_key = jax.random.split(seed)
kwargs = self.get_kwargs(**kwargs)
initial_state = self.get_initial_state(
init_key, num_chains=kwargs[snaper]["num_chains"])

vmapped_constrained_log_prob = jax.vmap(self.constrained_log_density())

def tlp(*args, **kwargs):
if args:
return vmapped_constrained_log_prob(args)
else:
return vmapped_constrained_log_prob(kwargs)

(draws, trace), *_ = snaper(
model=tlp, init_state=initial_state, seed=sample_key, **kwargs[snaper]
)
draws = self.transform_fn(draws)
if kwargs["extra_parameters"]["return_pytree"]:
return draws

if hasattr(draws, "_asdict"):
draws = draws._asdict()
elif not isinstance(draws, dict):
draws = {"var0": draws}

draws = {x: np.swapaxes(v, 0, 1) for x, v in draws.items()}
return az.from_dict(posterior=draws, sample_stats=_tfp_stats_to_dict(trace))


def _tfp_stats_to_dict(stats):
new_stats = {}
for k, v in stats.items():
if k == "variance_scaling":
continue
if np.ndim(v) > 1:
new_stats[k] = np.swapaxes(v, 0, 1)
else:
new_stats[k] = v
return new_stats
6 changes: 5 additions & 1 deletion bayeux/mcmc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,13 @@
"""Imports from submodules."""
# pylint: disable=g-importing-member
# pylint: disable=g-import-not-at-top
# pylint: disable=g-bad-import-order
import importlib

__all__ = []
# TFP-on-JAX always installed
from bayeux._src.mcmc.tfp import SnaperHMC as SNAPER_HMC_TFP
__all__ = ["SNAPER_HMC_TFP"]

if importlib.util.find_spec("blackjax") is not None:
from bayeux._src.mcmc.blackjax import CheesHMC as CheesHMCblackjax
from bayeux._src.mcmc.blackjax import HMC as HMCblackjax
Expand Down
31 changes: 31 additions & 0 deletions bayeux/tests/mcmc_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,37 @@ def test_return_pytree_numpyro():
assert pytree["x"]["y"].shape == (4, 10)


def test_return_pytree_tfp():
model = bx.Model(log_density=lambda pt: -pt["x"]["y"]**2,
test_point={"x": {"y": jnp.array(1.)}})
seed = jax.random.PRNGKey(0)
pytree = model.mcmc.tfp_snaper_hmc(
seed=seed,
return_pytree=True,
num_chains=4,
num_results=10,
num_burnin_steps=10,
)
assert pytree["x"]["y"].shape == (10, 4)


def test_return_pytree_flowmc():
model = bx.Model(log_density=lambda pt: -jnp.sum(pt["x"]["y"]**2),
test_point={"x": {"y": jnp.array([1., 1.])}})
seed = jax.random.PRNGKey(0)
pytree = model.mcmc.flowmc_realnvp_mala(
seed=seed,
return_pytree=True,
n_chains=4,
n_local_steps=1,
n_global_steps=1,
n_loop_training=1,
n_loop_production=5,
)
# 10 draws = (1 local + 1 global) * 5 loops
assert pytree["x"]["y"].shape == (10, 4, 2)


@pytest.mark.parametrize("method", METHODS)
def test_samplers(method):
# flowMC samplers are broken for 0 or 1 dimensions, so just test
Expand Down

0 comments on commit cfe94bd

Please sign in to comment.