-
Notifications
You must be signed in to change notification settings - Fork 89
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #264 from dustletter/wasm-simd
Wasm simd
- Loading branch information
Showing
3 changed files
with
287 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
#[cfg(target_arch = "wasm32")] | ||
use std::arch::wasm32::*; | ||
|
||
#[cfg(target_arch = "wasm32")] | ||
#[target_feature(enable = "simd128")] | ||
fn idct8(data: &mut [v128; 8]) { | ||
// The fixed-point constants here are obtained by taking the fractional part of the constants | ||
// from the non-SIMD implementation and scaling them up by 1<<15. This is because | ||
// i16x8_q15mulr_sat(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some | ||
// slight differences in rounding). | ||
|
||
// The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it | ||
// doesn't apply any further scaling and fixed point constants have a different precision. | ||
|
||
let p2 = data[2]; | ||
let p3 = data[6]; | ||
let p1 = i16x8_q15mulr_sat(i16x8_add_sat(p2, p3), i16x8_splat(17734)); // 0.5411961 | ||
let t2 = i16x8_sub_sat( | ||
i16x8_sub_sat(p1, p3), | ||
i16x8_q15mulr_sat(p3, i16x8_splat(27779)), // 0.847759065 | ||
); | ||
let t3 = i16x8_add_sat(p1, i16x8_q15mulr_sat(p2, i16x8_splat(25079))); // 0.765366865 | ||
|
||
let p2 = data[0]; | ||
let p3 = data[4]; | ||
let t0 = i16x8_add_sat(p2, p3); | ||
let t1 = i16x8_sub_sat(p2, p3); | ||
|
||
let x0 = i16x8_add_sat(t0, t3); | ||
let x3 = i16x8_sub_sat(t0, t3); | ||
let x1 = i16x8_add_sat(t1, t2); | ||
let x2 = i16x8_sub_sat(t1, t2); | ||
|
||
let t0 = data[7]; | ||
let t1 = data[5]; | ||
let t2 = data[3]; | ||
let t3 = data[1]; | ||
|
||
let p3 = i16x8_add_sat(t0, t2); | ||
let p4 = i16x8_add_sat(t1, t3); | ||
let p1 = i16x8_add_sat(t0, t3); | ||
let p2 = i16x8_add_sat(t1, t2); | ||
let p5 = i16x8_add_sat(p3, p4); | ||
let p5 = i16x8_add_sat(p5, i16x8_q15mulr_sat(p5, i16x8_splat(5763))); // 0.175875602 | ||
|
||
let t0 = i16x8_q15mulr_sat(t0, i16x8_splat(9786)); // 0.298631336 | ||
let t1 = i16x8_add_sat( | ||
i16x8_add_sat(t1, t1), | ||
i16x8_q15mulr_sat(t1, i16x8_splat(1741)), // 0.053119869 | ||
); | ||
let t2 = i16x8_add_sat( | ||
i16x8_add_sat(t2, i16x8_add_sat(t2, t2)), | ||
i16x8_q15mulr_sat(t2, i16x8_splat(2383)), // 0.072711026 | ||
); | ||
let t3 = i16x8_add_sat(t3, i16x8_q15mulr_sat(t3, i16x8_splat(16427))); // 0.501321110 | ||
|
||
let p1 = i16x8_sub_sat(p5, i16x8_q15mulr_sat(p1, i16x8_splat(29490))); // 0.899976223 | ||
let p2 = i16x8_sub_sat( | ||
i16x8_sub_sat(i16x8_sub_sat(p5, p2), p2), | ||
i16x8_q15mulr_sat(p2, i16x8_splat(18446)), // 0.562915447 | ||
); | ||
|
||
let p3 = i16x8_sub_sat( | ||
i16x8_q15mulr_sat(p3, i16x8_splat(-31509)), // -0.961570560 | ||
p3, | ||
); | ||
let p4 = i16x8_q15mulr_sat(p4, i16x8_splat(-12785)); // -0.390180644 | ||
|
||
let t3 = i16x8_add_sat(i16x8_add_sat(p1, p4), t3); | ||
let t2 = i16x8_add_sat(i16x8_add_sat(p2, p3), t2); | ||
let t1 = i16x8_add_sat(i16x8_add_sat(p2, p4), t1); | ||
let t0 = i16x8_add_sat(i16x8_add_sat(p1, p3), t0); | ||
|
||
data[0] = i16x8_add_sat(x0, t3); | ||
data[7] = i16x8_sub_sat(x0, t3); | ||
data[1] = i16x8_add_sat(x1, t2); | ||
data[6] = i16x8_sub_sat(x1, t2); | ||
data[2] = i16x8_add_sat(x2, t1); | ||
data[5] = i16x8_sub_sat(x2, t1); | ||
data[3] = i16x8_add_sat(x3, t0); | ||
data[4] = i16x8_sub_sat(x3, t0); | ||
} | ||
|
||
#[cfg(target_arch = "wasm32")] | ||
#[target_feature(enable = "simd128")] | ||
fn transpose8(data: &mut [v128; 8]) { | ||
// Transpose a 8x8 matrix with a sequence of interleaving operations. | ||
// Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e. | ||
// A0 B0 A1 B1 ... | ||
// dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved - | ||
// A0 B0 C0 D0 A1 B1 C1 D1 ... | ||
let d01l = i16x8_shuffle::<0, 8, 1, 9, 2, 10, 3, 11>(data[0], data[1]); | ||
let d23l = i16x8_shuffle::<0, 8, 1, 9, 2, 10, 3, 11>(data[2], data[3]); | ||
let d45l = i16x8_shuffle::<0, 8, 1, 9, 2, 10, 3, 11>(data[4], data[5]); | ||
let d67l = i16x8_shuffle::<0, 8, 1, 9, 2, 10, 3, 11>(data[6], data[7]); | ||
let d01h = i16x8_shuffle::<4, 12, 5, 13, 6, 14, 7, 15>(data[0], data[1]); | ||
let d23h = i16x8_shuffle::<4, 12, 5, 13, 6, 14, 7, 15>(data[2], data[3]); | ||
let d45h = i16x8_shuffle::<4, 12, 5, 13, 6, 14, 7, 15>(data[4], data[5]); | ||
let d67h = i16x8_shuffle::<4, 12, 5, 13, 6, 14, 7, 15>(data[6], data[7]); | ||
|
||
// Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers. | ||
let d0123ll = i32x4_shuffle::<0, 4, 1, 5>(d01l, d23l); | ||
let d0123lh = i32x4_shuffle::<2, 6, 3, 7>(d01l, d23l); | ||
let d4567ll = i32x4_shuffle::<0, 4, 1, 5>(d45l, d67l); | ||
let d4567lh = i32x4_shuffle::<2, 6, 3, 7>(d45l, d67l); | ||
let d0123hl = i32x4_shuffle::<0, 4, 1, 5>(d01h, d23h); | ||
let d0123hh = i32x4_shuffle::<2, 6, 3, 7>(d01h, d23h); | ||
let d4567hl = i32x4_shuffle::<0, 4, 1, 5>(d45h, d67h); | ||
let d4567hh = i32x4_shuffle::<2, 6, 3, 7>(d45h, d67h); | ||
|
||
// Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers. | ||
data[0] = i64x2_shuffle::<0, 2>(d0123ll, d4567ll); | ||
data[1] = i64x2_shuffle::<1, 3>(d0123ll, d4567ll); | ||
data[2] = i64x2_shuffle::<0, 2>(d0123lh, d4567lh); | ||
data[3] = i64x2_shuffle::<1, 3>(d0123lh, d4567lh); | ||
data[4] = i64x2_shuffle::<0, 2>(d0123hl, d4567hl); | ||
data[5] = i64x2_shuffle::<1, 3>(d0123hl, d4567hl); | ||
data[6] = i64x2_shuffle::<0, 2>(d0123hh, d4567hh); | ||
data[7] = i64x2_shuffle::<1, 3>(d0123hh, d4567hh); | ||
} | ||
|
||
#[cfg(target_arch = "wasm32")] | ||
#[target_feature(enable = "simd128")] | ||
pub fn dequantize_and_idct_block_8x8( | ||
coefficients: &[i16; 64], | ||
quantization_table: &[u16; 64], | ||
output_linestride: usize, | ||
output: &mut [u8], | ||
) { | ||
// The loop below will write to positions [output_linestride * i, output_linestride * i + 8) | ||
// for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7, | ||
// and if that position is in-bounds, so are all other accesses. | ||
assert!( | ||
output.len() | ||
> output_linestride | ||
.checked_mul(7) | ||
.unwrap() | ||
.checked_add(7) | ||
.unwrap() | ||
); | ||
|
||
const SHIFT: u32 = 3; | ||
|
||
// Read the DCT coefficients, scale them up and dequantize them. | ||
let mut data = [i16x8_splat(0); 8]; | ||
unsafe { | ||
for i in 0..8 { | ||
data[i] = i16x8_shl( | ||
i16x8_mul( | ||
v128_load(coefficients.as_ptr().wrapping_add(i * 8) as *const _), | ||
v128_load(quantization_table.as_ptr().wrapping_add(i * 8) as *const _), | ||
), | ||
SHIFT, | ||
); | ||
} | ||
} | ||
|
||
// Usual column IDCT - transpose - column IDCT - transpose approach. | ||
idct8(&mut data); | ||
transpose8(&mut data); | ||
idct8(&mut data); | ||
transpose8(&mut data); | ||
|
||
for i in 0..8 { | ||
// The two passes of the IDCT algorithm give us a factor of 8, so the shift here is | ||
// increased by 3. | ||
// As values will be stored in a u8, they need to be 128-centered and not 0-centered. | ||
// We add 128 with the appropriate shift for that purpose. | ||
const OFFSET: i16 = 128 << (SHIFT + 3); | ||
// We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting. | ||
const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1; | ||
|
||
let data_with_offset = i16x8_add_sat(data[i], i16x8_splat(OFFSET + ROUNDING_BIAS)); | ||
|
||
// SAFETY: the assert at the start of this function ensures | ||
// `output_linestride * i + 7` < output.len(), so all accesses are in-bounds. | ||
unsafe { | ||
v128_store64_lane::<0>( | ||
u8x16_narrow_i16x8( | ||
i16x8_shr(data_with_offset, SHIFT + 3), | ||
i16x8_splat(0), | ||
), | ||
output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _, | ||
); | ||
} | ||
} | ||
} | ||
|
||
#[cfg(target_arch = "wasm32")] | ||
#[target_feature(enable = "simd128")] | ||
pub fn color_convert_line_ycbcr(y_slice: &[u8], cb_slice: &[u8], cr_slice: &[u8], output: &mut [u8]) -> usize { | ||
|
||
assert!(output.len() % 3 == 0); | ||
let num = output.len() / 3; | ||
assert!(num <= y_slice.len()); | ||
assert!(num <= cb_slice.len()); | ||
assert!(num <= cr_slice.len()); | ||
|
||
let num_vecs = num / 8; | ||
|
||
for i in 0..num_vecs { | ||
const SHIFT: u32 = 6; | ||
// Load. | ||
let y: v128; | ||
let cb: v128; | ||
let cr: v128; | ||
// SAFETY: i is at most `num / 8 - 8`, so the highest v128_load64_zero reads from | ||
// [num - 8, num). The above asserts ensure this is in-bounds. | ||
unsafe { | ||
y = v128_load64_zero(y_slice.as_ptr().wrapping_add(i * 8) as *const _); | ||
cb = v128_load64_zero(cb_slice.as_ptr().wrapping_add(i * 8) as *const _); | ||
cr = v128_load64_zero(cr_slice.as_ptr().wrapping_add(i * 8) as *const _); | ||
} | ||
|
||
// Convert to 16 bit. | ||
let y = i16x8_shl(i16x8_extend_low_u8x16(y), SHIFT); | ||
let cb = i16x8_shl(i16x8_extend_low_u8x16(cb), SHIFT); | ||
let cr = i16x8_shl(i16x8_extend_low_u8x16(cr), SHIFT); | ||
|
||
// Add offsets | ||
let c128 = i16x8_splat(128 << SHIFT); | ||
let y = i16x8_add_sat(y, i16x8_splat((1 << SHIFT) >> 1)); | ||
let cb = i16x8_sub_sat(cb, c128); | ||
let cr = i16x8_sub_sat(cr, c128); | ||
|
||
// Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772 | ||
let cr_140200 = i16x8_add_sat(i16x8_q15mulr_sat(cr, i16x8_splat(13173)), cr); | ||
let cb_034414 = i16x8_q15mulr_sat(cb, i16x8_splat(11276)); | ||
let cr_071414 = i16x8_q15mulr_sat(cr, i16x8_splat(23401)); | ||
let cb_177200 = i16x8_add_sat(i16x8_q15mulr_sat(cb, i16x8_splat(25297)), cb); | ||
|
||
// Last conversion step. | ||
let r = i16x8_add_sat(y, cr_140200); | ||
let g = i16x8_sub_sat(y, i16x8_add_sat(cb_034414, cr_071414)); | ||
let b = i16x8_add_sat(y, cb_177200); | ||
|
||
// Shift back and convert to u8. | ||
let zero = u8x16_splat(0); | ||
let r = u8x16_narrow_i16x8(i16x8_shr(r, SHIFT), zero); | ||
let g = u8x16_narrow_i16x8(i16x8_shr(g, SHIFT), zero); | ||
let b = u8x16_narrow_i16x8(i16x8_shr(b, SHIFT), zero); | ||
|
||
// Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb... | ||
|
||
let rg_lanes = i8x16_shuffle::<0, 16, | ||
1, 17, | ||
2, 18, | ||
3, 19, | ||
4, 20, | ||
5, 21, | ||
6, 22, | ||
7, 23>(r, g); | ||
|
||
let rgb_low = i8x16_shuffle::<0, 1, 16, // r0, g0, b0 | ||
2, 3, 17, // r1, g1, b1 | ||
4, 5, 18, // r2, g2, b2 | ||
6, 7, 19, // r3, g3, b3 | ||
8, 9, 20, // r4, g4, b4 | ||
10>(rg_lanes, b); // r5 | ||
|
||
let rgb_hi = i8x16_shuffle::<11, 21, 12, // g5, b5, r6 | ||
13, 22, 14, // g6, b6, r7 | ||
15, 23, 0, // g7, b7, -- | ||
0, 0, 0, // --, --, -- | ||
0, 0, 0, // --, --, -- | ||
0>(rg_lanes, b); // -- | ||
|
||
// SAFETY: i is at most `output.len() / 24 - 1` so the highest possible write is to | ||
// `output.len() - 1`. | ||
unsafe { | ||
v128_store(output.as_mut_ptr().wrapping_add(24 * i) as *mut _, rgb_low); | ||
v128_store64_lane::<0>(rgb_hi, output.as_mut_ptr().wrapping_add(24 * i + 16) as *mut _); | ||
} | ||
} | ||
|
||
num_vecs * 8 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters