-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add script to decontaminate datasets against benchmark datasets (#416)
* Add script to decontaminate datasets against benchmark datasets * Add docs for the decontamination script * Update README.md Co-authored-by: lewtun <[email protected]> * Update README.md Co-authored-by: lewtun <[email protected]> * Update README.md Co-authored-by: lewtun <[email protected]> * Update scripts/decontaminate.py Co-authored-by: lewtun <[email protected]> * Update scripts/decontaminate.py Co-authored-by: lewtun <[email protected]> * Update scripts/decontaminate.py Co-authored-by: lewtun <[email protected]> * Update scripts/decontaminate.py Co-authored-by: lewtun <[email protected]> * Update scripts/decontaminate.py Co-authored-by: lewtun <[email protected]> * Add license header and attribution to the authors --------- Co-authored-by: lewtun <[email protected]>
- Loading branch information
Showing
2 changed files
with
173 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
#!/usr/bin/env python | ||
# coding=utf-8 | ||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
This script is used to decontaminate a dataset by checking for n-gram overlap with other datasets. | ||
It uses the same approach presented in https://arxiv.org/abs/2501.19393, | ||
as found in: https://github.com/simplescaling/s1/blob/main/data/decontaminate_util.py | ||
python scripts/decontaminate.py \ | ||
--dataset "open-r1/verifiable-coding-problems-python" \ | ||
--split train \ | ||
--ngram_size 8 \ | ||
--problem_column problem \ | ||
--cleanup | ||
""" | ||
|
||
import collections | ||
|
||
from tqdm import tqdm | ||
|
||
|
||
def normalize_string(text: str) -> str: | ||
"""Basic string normalization.""" | ||
# Convert to lowercase and normalize whitespace | ||
text = text.lower().strip() | ||
# Replace multiple spaces with single space | ||
text = " ".join(text.split()) | ||
return text | ||
|
||
|
||
def word_ngrams(text: str, n: int) -> list: | ||
"""Generate word-level n-grams from text.""" | ||
words = text.split() | ||
return [" ".join(words[i : i + n]) for i in range(len(words) - n + 1)] | ||
|
||
|
||
def build_ngram_lookup(documents: list[str], ngram_size: int = 8) -> dict[str, set[int]]: | ||
"""Build ngram lookup for documents.""" | ||
lookup = collections.defaultdict(set) | ||
|
||
for doc_id, document in enumerate(tqdm(documents)): | ||
normalized_text = normalize_string(document) | ||
ngrams = word_ngrams(normalized_text, ngram_size) | ||
for ngram in ngrams: | ||
lookup[ngram].add(doc_id) | ||
|
||
return lookup | ||
|
||
|
||
def build_ngram_single(document: str, ngram_size: int = 8) -> set[str]: | ||
normalized_text = normalize_string(document) | ||
ngrams = word_ngrams(normalized_text, ngram_size) | ||
|
||
return set(ngrams) | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--dataset", type=str, required=True, help="Name of the dataset to check for contamination.") | ||
parser.add_argument("--split", type=str, default="train", help="Split to check for contamination, defaults to `train`.") | ||
parser.add_argument("--ngram_size", type=int, default=8, help="Size of n-grams to build, defaults to 8.") | ||
parser.add_argument( | ||
"--problem_column", type=str, default="problem", help="Name of the column containing the problem (prompt)." | ||
) | ||
parser.add_argument( | ||
"--cleanup", | ||
action="store_true", | ||
help="Whether to remove the contaminated rows before pushing the dataset.", | ||
) | ||
parser.add_argument( | ||
"--new_dataset_name", | ||
type=str, | ||
default=None, | ||
help="New name for the dataset. If not provided, will reuse the name and add a `_decontaminated` to the name." | ||
) | ||
args = parser.parse_args() | ||
|
||
from datasets import load_dataset, Dataset | ||
|
||
# Load the dataset to check for contamination | ||
ds = load_dataset(args.dataset, split=args.split) | ||
|
||
eval_datasets = { | ||
"aime_2024": (load_dataset("HuggingFaceH4/aime_2024", split="train"), "problem"), | ||
"aime_2025": (load_dataset("yentinglin/aime_2025", split="train"), "problem"), | ||
"math_500": (load_dataset("HuggingFaceH4/MATH-500", split="test"), "problem"), | ||
"gpqa": (load_dataset("Idavidrein/gpqa", "gpqa_diamond", split="train", trust_remote_code=True), "Question"), | ||
"lcb": ( | ||
load_dataset( | ||
"livecodebench/code_generation_lite", split="test", version_tag="v4_v5", trust_remote_code=True | ||
), | ||
"question_content", | ||
), | ||
} | ||
ngram_lookups = {} | ||
for ds_name, (eval_dataset, problem_col) in eval_datasets.items(): | ||
ngram_lookups[ds_name] = build_ngram_lookup(eval_dataset[problem_col], ngram_size=args.ngram_size) | ||
|
||
for eval_name, ngram_lookup in ngram_lookups.items(): | ||
# Update the ngram_lookup variable for each dataset | ||
def find_contaminated(row): | ||
# For each example we have to build the ngrams and check for all of them on each row | ||
ngrams = build_ngram_single(row[args.problem_column], ngram_size=args.ngram_size) | ||
row[f"contaminated_{eval_name}"] = any(set(ngram in ngram_lookup for ngram in ngrams)) | ||
return row | ||
|
||
ds = ds.map(find_contaminated, num_proc=8) | ||
|
||
# Allow cleaning up via CLI args (removing the contaminated examples and dropping the columns) | ||
def cleanup(dataset: Dataset) -> Dataset: | ||
initial_size = len(dataset) | ||
contamination_cols = [col for col in dataset.column_names if col.startswith("contaminated_")] | ||
for col in contamination_cols: | ||
if col.startswith("contaminated_"): | ||
size_prior = len(dataset) | ||
dataset = dataset.filter(lambda x: not x[col], num_proc=8) | ||
if len(dataset) < size_prior: | ||
print(f"Removed {size_prior - len(dataset)} samples from '{col.replace('contaminated_', '')}'") | ||
dataset = dataset.remove_columns(contamination_cols) | ||
print(f"Initial size: {initial_size}, Final size: {len(dataset)}") | ||
return dataset | ||
|
||
if args.cleanup: | ||
ds = cleanup(ds) | ||
|
||
new_ds_name = args.new_dataset_name or f"{args.dataset}_decontaminated" | ||
ds.push_to_hub(new_ds_name, split="train", private=False) | ||
print(f"Decontaminated dataset: {new_ds_name}") |