-
Notifications
You must be signed in to change notification settings - Fork 126
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat: add JGLUE tasks #469
Open
ryan-minato
wants to merge
4
commits into
huggingface:main
Choose a base branch
from
ryan-minato:jglue
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 2 commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2024 The HuggingFace Team | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
""" | ||
The Japanese benchmark JGLUE has been implemented, covering four of its five | ||
benchmark tasks (MARC-ja is unavailable as the dataset has been removed at | ||
Amazon's request). This effort is part of the plan to reimplement llm-jp-eval | ||
in the lighteval framework. | ||
|
||
Tasks: | ||
- JSTS | ||
- JNLI | ||
- JSQUAD | ||
- JCommonsenseQA | ||
|
||
The datasets were developed by Yahoo Japan, with prompts inspired by | ||
Stability-AI's fork of lm-evaluation-harness from last year, though the fork is | ||
no longer directly runnable. | ||
|
||
Dataset: https://github.com/yahoojapan/JGLUE | ||
Prompts: https://github.com/Stability-AI/lm-evaluation-harness | ||
""" | ||
|
||
import numpy as np | ||
from scipy.stats import pearsonr, spearmanr | ||
|
||
from lighteval.metrics.metrics import CorpusLevelMetric, Metrics | ||
from lighteval.metrics.utils.metric_utils import MetricCategory, MetricUseCase | ||
from lighteval.tasks.lighteval_task import LightevalTaskConfig | ||
from lighteval.tasks.requests import Doc | ||
|
||
|
||
_CITATION = """ | ||
@inproceedings{kurihara-etal-2022-jglue, | ||
title = "{JGLUE}: {J}apanese General Language Understanding Evaluation", | ||
author = "Kurihara, Kentaro and | ||
Kawahara, Daisuke and | ||
Shibata, Tomohide", | ||
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", | ||
month = jun, | ||
year = "2022", | ||
address = "Marseille, France", | ||
publisher = "European Language Resources Association", | ||
url = "https://aclanthology.org/2022.lrec-1.317", | ||
pages = "2957--2966", | ||
abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.", | ||
} | ||
""" | ||
|
||
|
||
# Metrics | ||
def correlation_metric(golds: list[int], predictions: list[str], **kwargs): | ||
def convert_to_float(score): | ||
try: | ||
return float(score) | ||
except ValueError: | ||
return None | ||
|
||
predicted_score = convert_to_float(predictions[0]) | ||
gold_score = convert_to_float(golds[0]) | ||
|
||
return { | ||
"predicted_score": predicted_score, | ||
"gold_score": gold_score, | ||
} | ||
|
||
|
||
def spearman_corpus_metric(items): | ||
predicted_scores, gold_scores = zip( | ||
*[ | ||
(item["predicted_score"], item["gold_score"]) | ||
for item in items | ||
if (item["gold_score"] is not None and item["predicted_score"] is not None) | ||
] | ||
) | ||
r, _ = spearmanr(predicted_scores, gold_scores) | ||
if np.isnan(r): | ||
return 0.0 | ||
frac = len(predicted_scores) / len(items) | ||
|
||
return r * frac | ||
|
||
|
||
def pearson_corpus_metric(items): | ||
predicted_scores, gold_scores = zip( | ||
*[ | ||
(item["predicted_score"], item["gold_score"]) | ||
for item in items | ||
if (item["gold_score"] is not None and item["predicted_score"] is not None) | ||
] | ||
) | ||
r, _ = pearsonr(predicted_scores, gold_scores) | ||
if np.isnan(r): | ||
return 0.0 | ||
frac = len(predicted_scores) / len(items) | ||
return r * frac | ||
|
||
|
||
spearman_metric = CorpusLevelMetric( | ||
metric_name="spearman_correlation", | ||
higher_is_better=True, | ||
category=MetricCategory.GENERATIVE, | ||
use_case=MetricUseCase.NONE, | ||
sample_level_fn=correlation_metric, | ||
corpus_level_fn=spearman_corpus_metric, | ||
) | ||
|
||
pearson_metric = CorpusLevelMetric( | ||
metric_name="pearson_correlation", | ||
higher_is_better=True, | ||
category=MetricCategory.GENERATIVE, | ||
use_case=MetricUseCase.NONE, | ||
sample_level_fn=correlation_metric, | ||
corpus_level_fn=pearson_corpus_metric, | ||
) | ||
|
||
# JSQUAD | ||
|
||
# JSQUAD_INSTRUCTION = "[題名]と[問題]から[質問]に対する[答え]を抜き出しなさい" # The original prompt words in the paper | ||
JSQUAD_INSTRUCTION = ( | ||
"[質問]に対する回答を文章から一言で抽出してください。回答は名詞で答えてください。 それ以外には何も含めないことを厳守してください。" | ||
) | ||
|
||
JSQUAD_PROMPT_TEMPLAT = """\ | ||
[題名]: {title} | ||
[問題]: {context} | ||
[質問]: {question} | ||
[答え]: """ | ||
|
||
|
||
def jsquad_prompt_fn(line, task_name: str = None): | ||
prompt = JSQUAD_PROMPT_TEMPLAT.format( | ||
title=line["title"], | ||
context=line["context"], | ||
question=line["question"] | ||
) | ||
query = JSQUAD_INSTRUCTION + "\n\n" + prompt | ||
answer = line["answers"][0]["text"] | ||
|
||
doc = Doc( | ||
task_name=task_name, | ||
query=query, | ||
choices=[answer], | ||
gold_index=0, | ||
instruction=JSQUAD_INSTRUCTION, | ||
) | ||
return doc | ||
|
||
|
||
jsquad_task = LightevalTaskConfig( | ||
name="jglue:jsquad", | ||
prompt_function=jsquad_prompt_fn, | ||
suite=["community"], | ||
hf_repo="zenless-lab/jsquad", | ||
hf_subset="default", | ||
hf_avail_splits=["test", "train"], | ||
evaluation_splits=["test"], | ||
few_shots_split="train", | ||
few_shots_select=None, | ||
generation_size=100, | ||
stop_sequence=["\n"], | ||
metric=[ | ||
Metrics.exact_match, | ||
Metrics.quasi_exact_match, | ||
Metrics.prefix_exact_match, | ||
Metrics.prefix_quasi_exact_match, | ||
Metrics.f1_score_macro, | ||
Metrics.f1_score_micro, | ||
], | ||
) | ||
|
||
|
||
# JCommonsenceQA | ||
|
||
# JCOMMONSENSE_QA_INSTRUCTION = "[問題]に対する[答え]を[選択肢]の中から選んでください。 " # The original prompt words in the paper | ||
JCOMMONSENSE_QA_INSTRUCTION = ( | ||
"質問と回答の選択肢を入力として受け取り、選択肢から回答を選択してください。なお、回答は選択肢の番号(例:0)でするものとします。" | ||
"回答となる数値をint型で返し、他には何も含めないことを厳守してください。" | ||
) | ||
|
||
JCOMMONSENSE_QA_PROMPT_TEMPLAT = """\ | ||
[問題]: {question} | ||
[選択肢]: {choices} | ||
[答え]: """ | ||
|
||
|
||
def jcommonsenseqa_prompt_fn(line, task_name: str = None): | ||
choices = [line[f"choice{i}"] for i in range(5)] | ||
prompt = JCOMMONSENSE_QA_PROMPT_TEMPLAT.format( | ||
question=line["question"], | ||
choices=str(choices) | ||
) | ||
query = JCOMMONSENSE_QA_INSTRUCTION + "\n\n" + prompt | ||
label = line["label"] | ||
|
||
return Doc( | ||
task_name=task_name, | ||
query=query, | ||
choices=choices, | ||
gold_index=label, | ||
instruction=JCOMMONSENSE_QA_INSTRUCTION, | ||
) | ||
|
||
|
||
jcommonsenseqa_task = LightevalTaskConfig( | ||
name="jglue:jcommonsenseqa", | ||
prompt_function=jcommonsenseqa_prompt_fn, | ||
suite=["community"], | ||
hf_repo="zenless-lab/jcommonsenseqa", | ||
hf_subset="default", | ||
hf_avail_splits=["test", "train"], | ||
evaluation_splits=["test"], | ||
few_shots_split="train", | ||
few_shots_select=None, | ||
generation_size=100, | ||
stop_sequence=["\n"], | ||
metric=[ | ||
Metrics.loglikelihood_acc, | ||
Metrics.loglikelihood_acc_norm, | ||
Metrics.loglikelihood_acc_norm_nospace, | ||
], | ||
) | ||
|
||
# JSTS | ||
|
||
JSTS_INSTRUCTION = ( | ||
"日本語の文ペアの意味がどのくらい近いかを判定し、類似度を0.0〜5.0までの間の値で付与してください。" | ||
"0.0に近いほど文ペアの意味が異なり、5.0に近いほど文ペアの意味が似ていることを表しています。" | ||
"整数値のみを返し、それ以外には何も含めないことを厳守してください。" | ||
) | ||
JSTS_PROMPT_TEMPLAT = """\ | ||
[文1]: {sentence1} | ||
[文2]: {sentence2} | ||
[類似度]: """ | ||
|
||
|
||
def jsts_prompt_fn(line, task_name: str = None): | ||
prompt = JSTS_PROMPT_TEMPLAT.format( | ||
sentence1=line["sentence1"], | ||
sentence2=line["sentence2"] | ||
) | ||
query = JSTS_INSTRUCTION + "\n\n" + prompt | ||
answer = line["label"] | ||
|
||
return Doc( | ||
task_name=task_name, | ||
query=query, | ||
choices=[answer], | ||
gold_index=0, | ||
instruction=JSTS_INSTRUCTION, | ||
) | ||
|
||
|
||
jsts_task = LightevalTaskConfig( | ||
name="jglue:jsts", | ||
prompt_function=jsts_prompt_fn, | ||
suite=["community"], | ||
hf_repo="zenless-lab/jsts", | ||
hf_subset="default", | ||
hf_avail_splits=["train", "validation"], | ||
evaluation_splits=["validation"], | ||
few_shots_split="train", | ||
few_shots_select=None, | ||
generation_size=100, | ||
stop_sequence=["\n"], | ||
metric=[spearman_metric, pearson_metric], | ||
) | ||
|
||
# JNLI | ||
|
||
JNLI_INSTRUCTION = """ | ||
前提と仮説の関係を「含意」、「矛盾」、「中立」の中から回答してください。 | ||
制約: | ||
- 前提から仮説が、論理的知識や常識的知識を用いて導出可能である場合は 含意 と出力 | ||
- 前提と仮説が両立しえない場合は 矛盾 と出力 | ||
- そのいずれでもない場合は 中立 と出力""" | ||
|
||
JNLI_PROMPT_TEMPLAT = """\ | ||
[前提]: {premise} | ||
[仮説]: {hypothesis} | ||
[関係]: """ | ||
|
||
JNLI_LABELS = ["含意", "中立", "矛盾"] | ||
|
||
|
||
def jnli_prompt_fn(line, task_name: str = None): | ||
prompt = JNLI_PROMPT_TEMPLAT.format( | ||
premise=line["premise"], | ||
hypothesis=line["hypothesis"] | ||
) | ||
query = JNLI_INSTRUCTION + "\n\n" + prompt | ||
label = line["label"] | ||
|
||
return Doc( | ||
task_name=task_name, | ||
query=query, | ||
choices=JNLI_LABELS, | ||
gold_index=label, | ||
instruction=JNLI_INSTRUCTION, | ||
) | ||
|
||
|
||
jnli_task = LightevalTaskConfig( | ||
name="jglue:jnli", | ||
prompt_function=jnli_prompt_fn, | ||
suite=["community"], | ||
hf_repo="zenless-lab/jnli", | ||
hf_subset="default", | ||
hf_avail_splits=["test", "train"], | ||
evaluation_splits=["test"], | ||
few_shots_split="train", | ||
few_shots_select=None, | ||
generation_size=100, | ||
stop_sequence=["\n"], | ||
metric=[ | ||
Metrics.loglikelihood_acc, | ||
Metrics.loglikelihood_acc_norm, | ||
Metrics.loglikelihood_acc_norm_nospace, | ||
], | ||
) | ||
|
||
|
||
TASKS_TABLE = [jsquad_task, jcommonsenseqa_task, jsts_task, jnli_task] |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@NathanHB I believe we could add these 2 to core metrics, wdyt?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
definitely !