Skip to content

Commit

Permalink
GCV Refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
ZeroCool2u committed Jun 23, 2023
1 parent c98e7f1 commit ec14c5a
Showing 1 changed file with 65 additions and 35 deletions.
100 changes: 65 additions & 35 deletions csaps/_sspumv.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,10 +40,6 @@ def breaks(self) -> np.ndarray:
@property
def coeffs(self) -> np.ndarray:
return self.c

@property
def gcv(self) -> float:
return self.gcv

@property
def order(self) -> int:
Expand All @@ -53,6 +49,14 @@ def order(self) -> int:
def pieces(self) -> int:
return self.c.shape[1]

@property
def gcv(self) -> float:
return self.gcv

@property
def degrees_of_freedom(self) -> float:
return self.degrees_of_freedom

@property
def ndim(self) -> int:
"""Returns the number of spline dimensions
Expand Down Expand Up @@ -83,6 +87,7 @@ def __repr__(self): # pragma: no cover
f' pieces: {self.pieces}\n'
f' order: {self.order}\n'
f' ndim: {self.ndim}\n'
f' degrees of freedom: {self.degrees_of_freedom}\n'
f' gcv: {self.gcv}\n'

)
Expand Down Expand Up @@ -126,18 +131,20 @@ class CubicSmoothingSpline(ISmoothingSpline[
and less sensitive to nonuniformity of weights and xdata clumping
.. versionadded:: 1.1.0
calculate_gcv : [*Optional*] bool
If True, the Generalized Cross Validation criterion value will be calculated for the spline upon creation.
The GCV can be minimized to attempt to identify an optimal smoothing parameter, while penalizing over fitting.
Strictly speaking this involves generating splines for all smoothing parameter values across the valid domain
of the smoothing parameter [0,1] then selecting the smoothing parameter that produces the lowest GCV.
[See GCV in TEOSL (page 244 section 7.52)](https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12_toc.pdf) for more information on methodology.
The simplest way to use the GCV is to setup a loop that generates a spline with your data at every step, a step size
of 0.001 is generally sufficient, and keep track of the spline that produces the lowest GCV. Setting this parameter to True,
does _not_ generate the lowest GCV, it simply generates the value for the spline with this specific smoothing parameter,
so that you may decide how to optimize it for yourself.
calculate_degrees_of_freedom : [*Optional*] bool
If True, the degrees of freedom for the spline will be calculated and set as a property on the returned
spline object. Typically the degrees of freedom may be used to calculate the Generalized Cross Validation
criterion. The GCV can be minimized to attempt to identify an optimal smoothing parameter, while penalizing
over fitting.
Strictly speaking this involves generating splines for all smoothing parameter values across the valid domain
of the smoothing parameter [0,1] then selecting the smoothing parameter that produces the lowest GCV. See
[GCV in TEOSL (page 244 section 7.52)](https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12_toc.pdf)
for more information on methodology.
The simplest way to use the GCV is to setup a loop that generates a spline with your data at every step, a step
size of 0.001 is generally sufficient, and keep track of the spline that produces the lowest GCV. Setting this
parameter to True, does _not_ generate the lowest GCV, it simply sets the neccesary dependencies to use the
calculate_gcv function. You must still compute the GCV for each smoothing parameter.
"""

Expand All @@ -150,17 +157,13 @@ def __init__(self,
smooth: Optional[float] = None,
axis: int = -1,
normalizedsmooth: bool = False,
calculate_gcv: bool = False):
calculate_degrees_of_freedom: bool = False):

x, y, w, shape, axis = self._prepare_data(xdata, ydata, weights, axis)
if calculate_gcv:
coeffs, smooth, gcv = self._make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_gcv)
self.gcv = gcv
else:
coeffs, smooth = self._make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_gcv)
self.gcv = None
coeffs, smooth, degrees_of_freedom = self._make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_degrees_of_freedom)
spline = SplinePPForm.construct_fast(coeffs, x, axis=axis)

self.degrees_of_freedom = degrees_of_freedom
self.gcv = None
self._smooth = smooth
self._spline = spline

Expand Down Expand Up @@ -220,6 +223,33 @@ def spline(self) -> SplinePPForm:
"""
return self._spline

def compute_gcv(self, y, y_pred) -> float:
"""Computes the GCV using the degrees of freedom, which must be computed upon spline creation
Parameters
----------
y : 1-d array-like
Points the spline was evaluated at
y_pred : 1-d array-like
Predicted values returned from the generated spline object
Returns
-------
gcv : float
The generalized cross validation criterion
"""
if not self.degrees_of_freedom:
raise ValueError("You must recreate the spline with the calculate_degrees_of_freedom parameter set to True")

y = np.asarray(y, dtype=np.float64)
y_pred = np.asarray(y_pred, dtype=np.float64)
self.gcv: float = np.linalg.norm(y-y_pred)**2 / (y.size - self.degrees_of_freedom)**2
return self.gcv

@staticmethod
def _prepare_data(xdata, ydata, weights, axis):
xdata = np.asarray(xdata, dtype=np.float64)
Expand Down Expand Up @@ -285,7 +315,7 @@ def _normalize_smooth(x: np.ndarray, w: np.ndarray, smooth: Optional[float]):
return p

@staticmethod
def _make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_gcv):
def _make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_degrees_of_freedom):
pcount = x.size
dx = np.diff(x)

Expand Down Expand Up @@ -314,10 +344,10 @@ def _make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_gcv):
dx_recip = 1. / dx
diags_qtw = np.vstack((dx_recip[:-1], -(dx_recip[1:] + dx_recip[:-1]), dx_recip[1:]))
diags_sqrw_recip = 1. / np.sqrt(w)

# Calculate and store qt separately, so we can use it later to calculate the degrees of freedom for the gcv
qt = sp.diags(diags_qtw, [0, 1, 2], (pcount - 2, pcount))
qtw = ( qt @ sp.diags(diags_sqrw_recip, 0, (pcount, pcount)))
qtw = (qt @ sp.diags(diags_sqrw_recip, 0, (pcount, pcount)))
qtw = qtw @ qtw.T

p = smooth
Expand Down Expand Up @@ -359,11 +389,11 @@ def _make_spline(x, y, w, smooth, shape, normalizedsmooth, calculate_gcv):

c_shape = (4, pcount - 1) + shape[1:]
c = np.vstack((c1, c2, c3, c4)).reshape(c_shape)
# As calculating the GCV is a relatively expensive operation, it's best to add the calculation inline and make it optional
if calculate_gcv:
degrees_of_freedom = p * (la.inv(p * W + ((1-p) * 6 * qt.T @ la.inv(r) @ qt)) @ W).trace()
gcv = np.linalg.norm(y-y_pred)**2 / (y.size - degrees_of_freedom)**2
return c, p, gcv

return c, p

# As calculating the GCV is a relatively expensive operation, we store the degrees of freedom
# required for the GCV calculation
if calculate_degrees_of_freedom:
degrees_of_freedom = p * (la.inv(p * w + ((1-p) * 6 * qt.T @ la.inv(r) @ qt)) @ w).trace()
return c, p, degrees_of_freedom
else:
return c, p, None

0 comments on commit ec14c5a

Please sign in to comment.