Skip to content

Commit

Permalink
fixed layout
Browse files Browse the repository at this point in the history
  • Loading branch information
dgsyrc committed Jun 18, 2024
1 parent 453e426 commit 47a0327
Show file tree
Hide file tree
Showing 24 changed files with 81 additions and 81 deletions.
Binary file modified Analysis of Signals and Linear Systems.pdf
Binary file not shown.
28 changes: 14 additions & 14 deletions Chapter01B.tex
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ \subsubsection{模拟信号、抽样信号和数字信号}

\subsubsection{周期信号}

\begin{BoxDefinition}[周期信号]
\begin{BoxDefinition}[周期信号]*
定义在$(-\infty,\infty)$区间,每隔一定时间$T$(或整数$N$),按相同规律重复变化的信号。

连续周期信号$f(t)$满足
Expand All @@ -88,11 +88,11 @@ \subsubsection{周期信号}

不具有周期性的信号称为非周期信号。

\begin{BoxProperty}[连续周期信号的周期]
\begin{BoxProperty}[连续周期信号的周期]*
两个周期信号$x(t),y(t)$的周期分别为$T_1$$T_2$,若其周期之比$T_1/T_2$为有理数,则其和信号$x(t)+y(t)$仍然是周期信号,其周期为$T_1$$T_2$的最小公倍数。
\end{BoxProperty}

\begin{BoxProperty}[正弦序列的周期]
\begin{BoxProperty}[正弦序列的周期]*
对于离散周期信号$f(k) = \sin(\beta k)$

仅当$\frac{2\pi}{\beta}$为整数时,正弦序列才具有周期
Expand All @@ -112,7 +112,7 @@ \subsubsection{周期信号}

\subsubsection{能量信号和功率信号}

\begin{BoxDefinition}[能量信号]
\begin{BoxDefinition}[能量信号]*
满足以下条件的连续信号称为能量信号
\begin{Equation}
E = \int_{-\infty}^{\infty}\left|f(t)\right|^2 dt < \infty
Expand All @@ -124,7 +124,7 @@ \subsubsection{能量信号和功率信号}
即能量有界,此时有$P = 0$
\end{BoxDefinition}

\begin{BoxDefinition}[功率信号]
\begin{BoxDefinition}[功率信号]*
满足以下条件的连续信号称为功率信号
\begin{Equation}
P = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}\left|f(t)\right|^2 dt < \infty
Expand All @@ -142,11 +142,11 @@ \subsubsection{能量信号和功率信号}

\subsubsection{一维信号和多维信号}

\begin{BoxDefinition}[一维信号]
\begin{BoxDefinition}[一维信号]*
只由一个自变量描述的信号,如语音信号。
\end{BoxDefinition}

\begin{BoxDefinition}[多维信号]
\begin{BoxDefinition}[多维信号]*
由多个自变量描述的信号,如图像信号。
\end{BoxDefinition}

Expand All @@ -158,7 +158,7 @@ \subsubsection{指数信号}
\includegraphics[width=40mm]{visio/1.5.pdf}
\end{Figure}

\begin{BoxDefinition}[指数信号]
\begin{BoxDefinition}[指数信号]*
形如以下形式的信号为指数信号
\begin{Equation}
f(t)=Ke^{\alpha t}
Expand All @@ -170,7 +170,7 @@ \subsubsection{指数信号}
$\alpha > 0$时指数增长
\end{BoxDefinition}

\begin{BoxDefinition}[单边衰减指数信号]
\begin{BoxDefinition}[单边衰减指数信号]*
\begin{Equation}
f(t)=\left\{
\begin{aligned}
Expand All @@ -188,7 +188,7 @@ \subsubsection{指数信号}

\subsubsection{正弦信号}

\begin{BoxDefinition}[正弦信号]
\begin{BoxDefinition}[正弦信号]*
形如以下形式的信号为正弦信号
\begin{Equation}
f(t)=K\sin(\omega t +\theta)
Expand All @@ -203,7 +203,7 @@ \subsubsection{正弦信号}
\end{Equation}
\end{BoxDefinition}

\begin{BoxDefinition}[衰减正弦信号]
\begin{BoxDefinition}[衰减正弦信号]*
\begin{Equation}
f(t)=\left\{
\begin{aligned}
Expand All @@ -217,7 +217,7 @@ \subsubsection{正弦信号}

\subsubsection{复指数信号}

\begin{BoxDefinition}[复指数信号]
\begin{BoxDefinition}[复指数信号]*
复指数信号
\begin{Equation}
f(t)=Ke^{(\sigma + \mathrm{j} \omega)t}=Ke^{\sigma t}\cos(\omega t) + \mathrm{j}Ke^{\sigma t}\sin(\omega t)
Expand Down Expand Up @@ -245,7 +245,7 @@ \subsubsection{复指数信号}

\subsubsection{抽样信号}

\begin{Figure}[抽样信号]
\begin{Figure}[抽样信号]*
\includegraphics[width=100mm]{visio/1.6.pdf}
\end{Figure}

Expand All @@ -256,7 +256,7 @@ \subsubsection{抽样信号}
\end{Equation}
\end{BoxDefinition}

\begin{BoxProperty}[抽样信号的性质]
\begin{BoxProperty}[抽样信号的性质]*
抽样信号有如下性质
\begin{Equation}
\begin{array}{l}
Expand Down
2 changes: 1 addition & 1 deletion Chapter01D.tex
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ \subsection{单位冲激函数}

\subsection{冲激函数的性质}

\begin{BoxProperty}[冲激函数的取样性]
\begin{BoxProperty}[冲激函数的取样性]*
冲激函数的取样性
\begin{Equation}
f(t)\delta(t)=f(0)\delta(t) \\
Expand Down
2 changes: 1 addition & 1 deletion Chapter01F.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ \subsubsection{线性}
\end{Equation}
\end{BoxProperty}

\begin{BoxProperty}[线性系统的条件]
\begin{BoxProperty}[线性系统的条件]*
判断一个系统是否属于线性系统,需要满足以下三个条件

可分解性
Expand Down
2 changes: 1 addition & 1 deletion Chapter02A.tex
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ \subsection{零输入响应和零状态响应}
$y_{zi}(t)$定义域为$t\geq0$
\end{BoxFormula}

\begin{BoxFormula}[零状态响应]
\begin{BoxFormula}[零状态响应]*
零状态响应解的形式与对应齐次方程通解相似,参考\xref{fml:微分方程的齐次解},区别在于需要加上特解$y_p(t)$,形式的规则同\xref{fml:微分方程的特解}

例如特征方程有$n$个单特征实根时
Expand Down
4 changes: 2 additions & 2 deletions Chapter02B.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ \section{冲激响应和阶跃响应}

\subsection{冲激响应}

\begin{BoxDefinition}[冲激响应]
\begin{BoxDefinition}[冲激响应]*
由单位冲激函数$\delta(t)$所引起的零状态响应称为单位冲激响应
\begin{Equation}
h(t) = T[\{0\},\delta(t)]
Expand Down Expand Up @@ -35,7 +35,7 @@ \subsection{冲激响应}

\end{BoxFormula}

\begin{BoxFormula}[冲激响应的求解-系数]
\begin{BoxFormula}[冲激响应的求解-系数]*

求解系数可由\xref{fml:零状态响应}中冲激函数匹配法求得各阶$0_+$值代入求解或奇异函数项平衡法直接解出系数(若响应包含冲激项,用此方法)

Expand Down
4 changes: 2 additions & 2 deletions Chapter02C.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ \section{卷积积分}

\subsection{信号的时域分解与卷积积分}

\begin{BoxDefinition}[信号的时域分解]
\begin{BoxDefinition}[信号的时域分解]*
对于任意的信号,均可以用若干个冲激函数叠加表示。

定义$p(t)$如下图
Expand Down Expand Up @@ -44,7 +44,7 @@ \subsection{信号的时域分解与卷积积分}

\subsection{卷积的图解法}

\begin{BoxProperty}[卷积的图解法]
\begin{BoxProperty}[卷积的图解法]*
对于卷积积分
\begin{Equation}
f(t) = \int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau)d\tau
Expand Down
10 changes: 5 additions & 5 deletions Chapter02D.tex
Original file line number Diff line number Diff line change
Expand Up @@ -68,19 +68,19 @@ \subsection{与冲击函数或阶跃函数的卷积}

\subsection{卷积的微积分性质}

\begin{BoxProperty}[卷积的微分性质]
\begin{BoxProperty}[卷积的微分性质]*
$f(t) = f_1(t)*f_2(t) = f_2(t)*f_1(t)$,则:
\begin{Equation}
f^{(1)}(t) = f_1^{(1)}(t) * f_2(t) = f_1(t) * f_2^{(1)}(t)
\end{Equation}
证明:
\end{BoxProperty}
证明:
\begin{Equation}
f^{(1)}(t) = \frac{d}{dt}\int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau)d\tau = \int_{-\infty}^{\infty} f_1(\tau) \frac{d}{dt}f_2(t-\tau) = f_1(t)*f_2^{(1)}(t)
\end{Equation}
$f_1^{(1)}(t) * f_2(t)$同理。
\end{BoxProperty}
$f_1^{(1)}(t) * f_2(t)$同理。

\begin{BoxProperty}[卷积的积分性质]
\begin{BoxProperty}[卷积的积分性质]*
$f(t) = f_1(t)*f_2(t) = f_2(t)*f_1(t)$,则:
\begin{Equation}
\int_{-\infty}^{t}\left[f_1(\tau)*f_2(\tau)\right]d\tau = \left[\int_{-\infty}^{t}f_1(\tau)d\tau\right]*f_2(t) = f_1(t)*\left[\int_{-\infty}^{t}f_2(\tau)d\tau\right]
Expand Down
6 changes: 3 additions & 3 deletions Chapter04A.tex
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ \subsection{信号正交与正交函数集}
可简记为函数内积为$0$
\end{BoxDefinition}

\begin{BoxDefinition}[正交函数集]
\begin{BoxDefinition}[正交函数集]*
$n$个函数$\varphi_1(t),\varphi_2(t),\dots,\varphi_n(t)$构成一个函数集,这些函数在区间$(t_1,t_2)$满足
\begin{Equation}
\int_{t_1}^{t_2}\varphi_i(t)\varphi_j(t)dt = \left\{\begin{aligned}
Expand All @@ -54,7 +54,7 @@ \subsection{信号正交与正交函数集}

\subsection{信号的正交分解}

\begin{BoxDefinition}[信号的正交分解]
\begin{BoxDefinition}[信号的正交分解]*
设有$n$个函数$\varphi_1(t),\varphi_2(t),\dots,\varphi_n(t)$在区间$(t_1,t_2)$构成一个正交函数空间。将任一函数$f(t)$用这$n$个正交函数的线性组合来近似,可表示为
\begin{Equation}
f(t)\approx C_1\varphi_1(t)+C_2\varphi_2(t)+\dots+\varphi_n(t)
Expand All @@ -71,7 +71,7 @@ \subsection{信号的正交分解}
\end{Equation}
\end{BoxDefinition}

\begin{BoxFormula}[巴塞瓦尔能量公式]
\begin{BoxFormula}[巴塞瓦尔能量公式]*
巴塞瓦尔能量公式
\begin{Equation}
\int_{t_1}^{t_2} f^2(t) dt= \sum\limits_{i=1}^{\infty}C_i^2K_i
Expand Down
6 changes: 3 additions & 3 deletions Chapter04B.tex
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ \subsection{傅里叶级数的三角式}
\end{Equation}
\end{BoxDefinition}

\begin{BoxDefinition}[傅里叶级数的三角函数形式]
\begin{BoxDefinition}[傅里叶级数的三角函数形式]*
$f(t) = f(t+mT)$,即$f(t)$为周期信号,且$\Omega = \frac{2\pi}{T}$,满足狄里赫利(Dirichlet)条件,可分解为以下三角级数,称为傅里叶级数。
\begin{Equation}
f(t) = \frac{a_0}{2} + \sum\limits_{n=1}^{\infty}a_n\cos(n\Omega t)+ \sum\limits_{n=1}^{\infty}b_n \sin(n\Omega t)
Expand Down Expand Up @@ -105,7 +105,7 @@ \subsection{波形的对称性与谐波特性}

\subsection{傅里叶级数的指数形式}

\begin{BoxDefinition}[傅里叶级数的指数形式]
\begin{BoxDefinition}[傅里叶级数的指数形式]*
虚指数函数集
\begin{Equation}
\left\{e^{jn\Omega t},n=0,\pm 1,\pm 2, \dots\right\}
Expand Down Expand Up @@ -146,7 +146,7 @@ \subsection{傅里叶级数的指数形式}
\end{Equation}
\end{BoxDefinition}

\begin{BoxProperty}[傅里叶系数之间的关系]
\begin{BoxProperty}[傅里叶系数之间的关系]*
傅里叶系数之间满足以下关系
\begin{Equation}
F_n = \frac{1}{2}A_ne^{\mathrm{j}\varphi_n} = |F_n|e^{\mathrm{j}\varphi_n} = \frac{1}{2}(a_n-\mathrm{j}b_n)
Expand Down
4 changes: 2 additions & 2 deletions Chapter04D.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ \section{非周期信号的频谱}

\subsection{傅里叶变换}

\begin{BoxDefinition}[傅里叶变换]
\begin{BoxDefinition}[傅里叶变换]*
$f(t)$的傅里叶变换
\begin{Equation}
F(\mathrm{j}\omega)=\int_{-\infty}^{\infty}f(t)e^{-\mathrm{j}\omega t}dt
Expand Down Expand Up @@ -39,7 +39,7 @@ \subsection{傅里叶变换}

\subsection{常用函数的傅里叶变换}

\begin{BoxFormula}[门函数的傅里叶变换]
\begin{BoxFormula}[门函数的傅里叶变换]*
门函数记为$g_{\tau}(t)$
\begin{Figure}[门函数]
\includegraphics[width=15mm]{visio/4.7.pdf}
Expand Down
16 changes: 8 additions & 8 deletions Chapter04E.tex
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ \subsection{对称性}

\subsection{尺度变换性质}

\begin{BoxProperty}[傅里叶变换的尺度变换性质]
\begin{BoxProperty}[傅里叶变换的尺度变换性质]*
如果$f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
\begin{Equation}
f(at)\longleftrightarrow\frac{1}{|a|}F\left(\mathrm{j}\frac{\omega}{a}\right)
Expand All @@ -67,7 +67,7 @@ \subsection{尺度变换性质}

\subsection{傅里叶变换的时移特性}

\begin{BoxProperty}[傅里叶变换的时移特性]
\begin{BoxProperty}[傅里叶变换的时移特性]*
如果$f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
\begin{Equation}
f(t-t_0)\longleftrightarrow e^{-\mathrm{j}\omega t_0}F(\mathrm{j}\omega)
Expand All @@ -77,7 +77,7 @@ \subsection{傅里叶变换的时移特性}

\subsection{频移性质}

\begin{BoxProperty}[傅里叶变换的频移性质]
\begin{BoxProperty}[傅里叶变换的频移性质]*
如果$f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
\begin{Equation}
F\left[\mathrm{j}(\omega - \omega_0)\right]\longleftrightarrow e^{\mathrm{j}\omega_0 t}f(t)
Expand All @@ -89,7 +89,7 @@ \subsection{频移性质}

\subsection{卷积性质}

\begin{BoxTheorem}[时域卷积定理]
\begin{BoxTheorem}[时域卷积定理]*
如果$f_1(t)\longleftrightarrow F_1(\mathrm{j}\omega)$$f_2(t)\longleftrightarrow F_2(\mathrm{j}\omega)$,那么
\begin{Equation}
f_1(t)*f_2(t) \longleftrightarrow F_1(\mathrm{j}\omega)F_2(\mathrm{j}\omega)
Expand All @@ -101,7 +101,7 @@ \subsection{卷积性质}

\subsection{时域的微分和积分}

\begin{BoxTheorem}[傅里叶变换的时域微分定理]
\begin{BoxTheorem}[傅里叶变换的时域微分定理]*
如果$f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
\begin{Equation}
f^{(n)}(t)\longleftrightarrow (\mathrm{j}\omega)^{n}F(\mathrm{j}\omega)
Expand Down Expand Up @@ -141,7 +141,7 @@ \subsection{频域的微分和积分}

\subsection{相关定理}

\begin{BoxDefinition}[相关函数]
\begin{BoxDefinition}[相关函数]*
相关函数即两函数间的相关性函数。
对于函数$f(t)$,其自相关函数为
\begin{Equation}
Expand All @@ -157,8 +157,8 @@ \subsection{相关定理}
\begin{Equation}
\begin{aligned}
f(t)*y(t) & = \int_{-\infty}^{\infty} f(\tau)y(t-\tau) d\tau \\
& = \int_{-\infty}^{\infty} f(\tau)f(\tau-t) d\tau \\
& = \int_{-\infty}^{\infty} f(t)f(t-\tau) dt
& = \int_{-\infty}^{\infty} f(\tau)f(\tau-t) d\tau \\
& = \int_{-\infty}^{\infty} f(t)f(t-\tau) dt
\end{aligned}
\end{Equation}
证毕。
Expand Down
2 changes: 1 addition & 1 deletion Chapter04F.tex
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ \subsection{能量谱密度}

\subsection{功率谱}

\begin{BoxDefinition}[功率谱]
\begin{BoxDefinition}[功率谱]*
功率谱指单位频率的信号功率,记为$P(\mathrm{j}\omega)$

在频带$df$内信号的总功率为$P(\omega)df$,因而信号在整个频率范围的总功率
Expand Down
6 changes: 3 additions & 3 deletions Chapter04G.tex
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
\section{周期信号的傅里叶变换}
\subsection{正、余弦的傅里叶变换}

\begin{BoxFormula}[正弦函数的傅里叶变换]
\begin{BoxFormula}[正弦函数的傅里叶变换]*
\xref{def:傅里叶级数的指数形式}可知,正弦函数满足
\begin{Equation}
\sin \omega_0 t = \frac{1}{2\mathrm{j}}(e^{\mathrm{j}\omega_0 t}-e^{-\mathrm{j}\omega_0 t})
Expand All @@ -25,7 +25,7 @@ \subsection{正、余弦的傅里叶变换}

\subsection{一般周期信号的傅里叶变换}

\begin{BoxProperty}[一般周期信号的傅里叶变换]
\begin{BoxProperty}[一般周期信号的傅里叶变换]*
对于一般的周期信号,由\xref{ppt:傅里叶变换的频移性质},满足
\begin{Equation}
f_T(t) = \sum\limits_{n=-\infty}^{\infty} F_n e^{\mathrm{j}n\omega t} \longleftrightarrow F_T(\mathrm{j}\omega) = 2\pi \sum\limits_{n=-\infty}^{\infty} F_n \delta(\omega-n\Omega)
Expand Down Expand Up @@ -61,5 +61,5 @@ \subsection{傅里叶系数与傅里叶变换关系}
\begin{Equation}
F_n = \left.\frac{1}{T} F_0(\mathrm{j}\omega)\right|_{\omega = n\Omega}
\end{Equation}

\end{BoxFormula}
Loading

0 comments on commit 47a0327

Please sign in to comment.