-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from dev-abuke/task-backend
Task backend
- Loading branch information
Showing
6 changed files
with
466 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
from typing import List | ||
from fastapi import FastAPI, Depends, HTTPException | ||
from sqlalchemy.orm import Session | ||
from . import models, schemas, database | ||
import pandas as pd | ||
import json | ||
|
||
from utils.backtest import run_backtest | ||
|
||
models.Base.metadata.create_all(bind=database.engine) | ||
|
||
app = FastAPI() | ||
|
||
def get_db(): | ||
db = database.SessionLocal() | ||
try: | ||
yield db | ||
finally: | ||
db.close() | ||
|
||
@app.get('/health') | ||
def check_health(): | ||
return "healthy" | ||
|
||
@app.post('/indicators/', response_model=schemas.Indicator) | ||
def create_indicator(indicator: schemas.IndicatorCreate, db: Session = Depends(get_db)): | ||
db_indicator = models.Indicator(**indicator.dict()) | ||
db.add(db_indicator) | ||
db.commit() | ||
db.refresh(db_indicator) | ||
return db_indicator | ||
|
||
@app.get('/indicators/', response_model=List[schemas.Indicator]) | ||
def read_indicators(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): | ||
indicators = db.query(models.Indicator).offset(skip).limit(limit).all() | ||
return indicators | ||
|
||
@app.post('/scenes/', response_model=schemas.Scene) | ||
def create_scene(scene: schemas.SceneCreate, db: Session = Depends(get_db)): | ||
db_scene = models.Scene(**scene.dict()) | ||
db.add(db_scene) | ||
db.commit() | ||
db.refresh(db_scene) | ||
return db_scene | ||
|
||
@app.get('/scenes/', response_model=List[schemas.Scene]) | ||
def read_scenes(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): | ||
scenes = db.query(models.Scene).offset(skip).limit(limit).all() | ||
return scenes | ||
|
||
@app.post('/backtests/{scene_id}', response_model=List[schemas.BacktestResult]) | ||
def perform_backtest(scene_id: int, db: Session = Depends(get_db)): | ||
db_scene = db.query(models.Scene).filter(models.Scene.id == scene_id).first() | ||
if db_scene is None: | ||
raise HTTPException(status_code=404, detail="Scene not found") | ||
|
||
# Fetch data based on the scene's date range | ||
df = fetch_data(db_scene.start_date, db_scene.end_date) | ||
|
||
# Perform backtest | ||
metrics = run_backtest({ | ||
'period': db_scene.period, | ||
'indicator_name': db_scene.indicator.name | ||
}, df) | ||
|
||
# Save metrics to database | ||
backtest_results = [] | ||
for metric in metrics: | ||
db_backtest_result = models.BacktestResult(scene_id=scene_id, **metric) | ||
db.add(db_backtest_result) | ||
db.commit() | ||
db.refresh(db_backtest_result) | ||
backtest_results.append(db_backtest_result) | ||
|
||
return backtest_results | ||
|
||
@app.get('/backtest_results/', response_model=List[schemas.BacktestResult]) | ||
def read_backtest_results(skip: int = 0, limit: int = 10, db: Session = Depends(get_db)): | ||
backtest_results = db.query(models.BacktestResult).offset(skip).limit(limit).all() | ||
return backtest_results | ||
|
||
def fetch_data(start_date, end_date): | ||
# Replace this with actual data fetching logic | ||
df = pd.read_csv('btc_usdt_candlestick.csv', index_col='timestamp', parse_dates=True) | ||
return df.loc[start_date:end_date] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from pydantic import BaseModel | ||
from typing import List, Optional | ||
from datetime import date, datetime | ||
|
||
class IndicatorBase(BaseModel): | ||
name: str | ||
description: Optional[str] = None | ||
|
||
class IndicatorCreate(IndicatorBase): | ||
pass | ||
|
||
class Indicator(IndicatorBase): | ||
id: int | ||
|
||
class Config: | ||
orm_mode = True | ||
|
||
class SceneBase(BaseModel): | ||
period: int | ||
start_date: date | ||
end_date: date | ||
indicator_id: int | ||
|
||
class SceneCreate(SceneBase): | ||
pass | ||
|
||
class Scene(SceneBase): | ||
id: int | ||
backtests: List['BacktestResult'] = [] | ||
indicator: Indicator | ||
|
||
class Config: | ||
orm_mode = True | ||
|
||
class BacktestResultBase(BaseModel): | ||
scene_id: int | ||
gross_profit: float | ||
net_profit: float | ||
number_of_trades: int | ||
winning_trades: Optional[int] = None | ||
losing_trades: Optional[int] = None | ||
max_drawdown: Optional[float] = None | ||
sharpe_ratio: Optional[float] = None | ||
|
||
class BacktestResultCreate(BacktestResultBase): | ||
pass | ||
|
||
class BacktestResult(BacktestResultBase): | ||
id: int | ||
created_at: datetime | ||
|
||
class Config: | ||
orm_mode = True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import backtrader as bt | ||
import pandas as pd | ||
|
||
class SMAStrategy(bt.Strategy): | ||
params = ( | ||
('period', 15), | ||
) | ||
|
||
def __init__(self): | ||
self.sma = bt.indicators.SMA(self.data.close, period=self.params.period) | ||
self.order = None | ||
self.buyprice = None | ||
self.buycomm = None | ||
|
||
def next(self): | ||
if self.order: | ||
return | ||
|
||
if self.sma > self.data.close: | ||
self.order = self.buy() | ||
elif self.sma < self.data.close: | ||
self.order = self.sell() | ||
|
||
def notify_order(self, order): | ||
if order.status in [order.Submitted, order.Accepted]: | ||
return | ||
|
||
if order.status in [order.Completed]: | ||
if order.isbuy(): | ||
self.buyprice = order.executed.price | ||
self.buycomm = order.executed.comm | ||
else: | ||
self.sellprice = order.executed.price | ||
self.sellcomm = order.executed.comm | ||
|
||
self.bar_executed = len(self) | ||
|
||
self.order = None | ||
|
||
def notify_trade(self, trade): | ||
if not trade.isclosed: | ||
return | ||
|
||
print(f'Operation Profit, Gross {trade.pnl}, Net {trade.pnlcomm}') | ||
self.cerebro.metrics.append({ | ||
'Period': self.params.period, | ||
'Gross Profit': trade.pnl, | ||
'Net Profit': trade.pnlcomm, | ||
'Number of Trades': len(self), | ||
'Winning Trades': len([t for t in self._trades if t.pnl > 0]), | ||
'Losing Trades': len([t for t in self._trades if t.pnl <= 0]), | ||
'Max Drawdown': self.broker.maxdrawdown, | ||
'Sharpe Ratio': self.broker.get_sharperatio() | ||
}) | ||
|
||
def run_backtest(scene, df): | ||
cerebro = bt.Cerebro() | ||
data = bt.feeds.PandasData(dataname=df) | ||
cerebro.adddata(data) | ||
|
||
if scene['indicator_name'] == 'SMA': | ||
cerebro.addstrategy(SMAStrategy, period=scene['period']) | ||
# Add more strategies as needed | ||
|
||
cerebro.metrics = [] | ||
cerebro.run() | ||
|
||
return cerebro.metrics |
Oops, something went wrong.