This project aims to develop a high-precision legal expert system for contract Q&A using Retrieval-Augmented Generation (RAG). The system leverages advanced natural language processing (NLP) techniques to provide accurate and context-aware answers to questions about legal contracts and integrates a powerful language model with a custom retrieval mechanism to provide accurate and contextually relevant answers to contract-related queries.
- Overview
- Project Structure
- Installation
- Usage
- Development
- Evaluation
- Optimization Techniques
- Contributing
- License
- Acknowledgments
- Contact
- Retrieval-Augmented Generation (RAG) pipeline for contract Q&A
- Customizable retriever and generator components
- Evaluation framework using RAGAS metrics
- Optimization techniques for improved performance
Legal_Expert_Contract_Advisor_Using_Precision_RAG/
├── data/
│ ├── raw/
│ ├── processed/
│ └── evaluation/
├── notebooks/
│ ├── 1_data_exploration.ipynb
│ ├── 2_rag_implementation.ipynb
│ └── 3_evaluation_and_optimization.ipynb
├── src/
│ ├── data/
│ │ ├── __init__.py
│ │ ├── preprocess.py
│ │ └── load_data.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── retriever.py
│ │ └── generator.py
│ ├── evaluation/
│ │ ├── __init__.py
│ │ └── metrics.py
│ └── utils/
│ ├── __init__.py
│ └── helpers.py
├── tests/
│ ├── test_data.py
│ ├── test_models.py
│ └── test_evaluation.py
├── config.yaml
├── requirements.txt
├── setup.py
├── main.py
├── .gitignore
└── README.md
data/
: Contains raw and processed data filesnotebooks/
: Jupyter notebooks for exploration, implementation, and evaluationsrc/
: Source code for the RAG systemdata/
: Data loading and preprocessing scriptsmodels/
: Retriever and generator model implementationsevaluation/
: Evaluation metrics and scriptsutils/
: Helper functions and utilities
tests/
: Unit tests for various componentsconfig.yaml
: Configuration file for project settingsrequirements.txt
: List of project dependenciessetup.py
: Setup script for the projectmain.py
: Main entry point for running the RAG system
- Clone the repository
git clone https://github.com/dev-abuke/Legal_Expert_Contract_Advisor_Using_Precision_RAG.git
- Navigate to project directory
cd Legal_Expert_Contract_Advisor_Using_Precision_RAG
- Create a virtual environment
python -m venv venv
- Activate the environment
source venv/bin/activate # On Windows, use venv\Scripts\activate
- Install the required dependencies:
pip install -r requirements.txt
-
Prepare your contract data and place it in the
data/raw/
directory. -
Preprocess the data
python src/data/preprocess.py
- Run the RAG system
python main.py
- Evaluate the system performance:
python src/evaluation/evaluate.py
- Use the Jupyter notebooks in the
notebooks/
directory for exploration and prototyping. - Implement core functionality in the
src/
directory. - Add unit tests in the
tests/
directory. - Use
config.yaml
to manage project settings.
The system's performance is evaluated using the following metrics
- Retrieval precision and recall
- Answer relevance
- Factual accuracy
- Response coherence
Refer to the evaluation notebook for detailed results and analysis.
This project explores various optimization techniques, including
- Advanced embedding models for retrieval
- Hybrid search methods
- Query expansion
- Chunking strategies
- Prompt engineering
Contributions to improve the system are welcome. Please follow these steps:
- Fork the repository
- Create a new branch (
git checkout -b feature/your-feature
) - Make your changes and commit them (
git commit -am 'Add new feature'
) - Push to the branch (
git push origin feature/your-feature
) - Create a new Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- 10 Academy for providing the challenge and learning opportunity
- LizzyAI for the project inspiration and guidance
For any queries, please open an issue on this repository or contact Abubeker Shamil.