Skip to content

Commit

Permalink
updates to the paper
Browse files Browse the repository at this point in the history
  • Loading branch information
Daniel Berry authored and Daniel Berry committed Nov 20, 2016
1 parent 27c1783 commit e830842
Show file tree
Hide file tree
Showing 10 changed files with 1,007 additions and 20 deletions.
Binary file modified .DS_Store
Binary file not shown.
474 changes: 474 additions & 0 deletions .Rhistory

Large diffs are not rendered by default.

9 changes: 9 additions & 0 deletions auto/paper.el
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
(TeX-add-style-hook
"paper"
(lambda ()
(TeX-run-style-hooks
"latex2e"
"IEEEtran"
"IEEEtran10"))
:latex)

163 changes: 163 additions & 0 deletions model.r.orig
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
########################
## Modeling code file ##
########################

## load packages
library(lme4)

## load data
load('all_data')
all_data$desert <- as.numeric(all_data$desert)

model_data <- subset(all_data, TOTAL.POPULATION > 0)


######################
## Complete pooling ##
######################

cp <- glm(desert ~ CTA_counts + vacant_counts, family = 'binomial', data = model_data)
summary(cp)
################
## No pooling ##
################

np <- glm(desert ~ CTA_counts + vacant_counts + Neighborhood, family = 'binomial', data = model_data)
summary(np)

#####################
## Partial pooling ##
#####################

pp <- glmer(desert ~ CTA_counts + vacant_counts + (1 | Neighborhood), data = model_data, family = 'binomial')
summary(pp)

##################
## Hierarchical ##
##################

## mlm <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + (1 | Neighborhood),
## data = model_data,
## family = 'binomial')
## summary(mlm)

## mlm_2 <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + Below.Poverty.Level + (1 | Neighborhood),
## data = model_data,
## family = 'binomial')
## summary(mlm_2)


## rescale variables
exclude <- c('Neighborhood', 'TRACT_BLOC','STATEFP10', 'COUNTYFP10', 'TRACTCE10', 'BLOCKCE10', 'GEOID10', 'NAME10', 'Longitude', 'Latitude', 'Community.Area.y', 'nearest_supermarket', 'Community.Area.x', 'store_counts', 'desert')
potential_covariates <- setdiff(names(all_data), exclude)
model_data_scale <- model_data
for (var in potential_covariates) {model_data_scale[var] <- as.numeric(scale(model_data[var]))}

## mlm_c <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c)

## mlm_c_2 <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + Below.Poverty.Level + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_2)

## mlm_c_3 <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + Below.Poverty.Level + NHB_p + PER.CAPITA.INCOME + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_3)

## mlm_c_4 <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + Below.Poverty.Level + NHB_p + PER.CAPITA.INCOME + HISP_p + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_4)

## mlm_c_5 <- glmer(desert ~ CTA_counts + vacant_counts + Diabetes.related + Below.Poverty.Level + NHB_p + PER.CAPITA.INCOME + HISP_p + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_5)

## mlm_c_6 <- glmer(desert ~ CTA_counts + vacant_counts + Dependency + NHB_p + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_6)

## mlm_c_7 <- glmer(desert ~ CTA_counts + vacant_counts + Dependency + HISP_p + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_7)

## mlm_c_8 <- glmer(desert ~ CTA_counts + vacant_counts + Dependency + Cancer..All.Sites. + HISP_p + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_8)

## mlm_c_9 <- glmer(desert ~ CTA_counts + vacant_counts + Dependency + Cancer..All.Sites. + NHB_p + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_9)

## mlm_c_10 <- glmer(desert ~ CTA_counts + vacant_counts + Dependency + Cancer..All.Sites. + Diabetes.related + TOTAL.POPULATION + (1 | Neighborhood),
## data = model_data_scale,
## family = 'binomial')
## summary(mlm_c_10)

cor(model_data[, c('Diabetes.related', 'NHB_p', 'NHW_p', 'HISP_p', 'PER.CAPITA.INCOME')])

search_covariates <- setdiff(potential_covariates, c('vacant_counts', 'CTA_counts', 'Community.Area.Number'))

best_model <- glmer(desert ~ vacant_counts + CTA_counts + (1 | Neighborhood),
data = model_data_scale,
family = 'binomial')

in_vars <- c()
out_vars <- search_covariates

library(parallel)
library(doMC)

registerDoMC(detectCores() - 3)

old_aic <- AIC(best_model)

fit_model <- function(i) {
print(paste('fitting:',i))
form <- as.formula(paste('desert ~ vacant_counts + CTA_counts +',
paste(c(in_vars, out_vars[i]), collapse = '+'),
'+(1|Neighborhood)'))
model <- glmer(form, data = model_data_scale, family = 'binomial')
return(c(i, AIC(model)))
}

while(TRUE) {
search_results <- foreach(i=1:length(out_vars), .combine = 'rbind') %dopar% fit_model(i)
min_aic <- which.min(search_results[,2])
if (min_aic < old_aic) {
print(paste('ADDING:',out_vars[min_aic]))
in_vars <- c(in_vars, out_vars[min_aic])
out_vars <- setdiff(out_vars, out_vars[min_aic])
print(search_results[min_aic,])
}
else {
break
}
}
print(paste('Final model:', in_vars, collapse = ', '))

<<<<<<< HEAD
model <- glmer(desert ~ CTA_counts + vacant_counts + Gonorrhea.in.Females + Cancer..All.Sites. + TOTAL.POPULATION + NHAS +
Dependency +Childhood.Lead.Poisoning + Prenatal.Care.Beginning.in.First.Trimester + Gonorrhea.in.Males
+ NHAM_p + Multiple.Race.. + Stroke..Cerebrovascular.Disease. + Firearm.related + Tuberculosis + NHW_p +
Teen.Birth.Rate + No.High.School.Diploma + Lung.Cancer +
(1|Neighborhood),
data = model_data_scale,
family = 'binomial')
summary(model)
=======
form <- as.formula(paste('desert ~ vacant_counts + CTA_counts +',
paste(in_vars, collapse = '+'),
'+(1|Neighborhood)'))
final_model <- glmer(form, data = model_data_scale, family = 'binomial')
save(final_model, 'final_model')
>>>>>>> fb724787ed67089995bb241b17b3acfa6bf91121
29 changes: 29 additions & 0 deletions paper.aux
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
\relax
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {I-A}}Food Deserts}{1}}
\@writefile{toc}{\contentsline {section}{\numberline {II}Methods}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-A}}Data Gathering and Manipulation}{1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-A}1}Block level data}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}1a} Crimes 2001 - present}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}1b} 311 Service Requests: Vacant Buildings}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}1c} CTA Ridership: Avg. Weekly Boardings during October 2010}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}1d} Census Block Population }{1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-A}2}Neighborhood level data}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}2a} Public Health Statistics: selected public health indicators by Chicago community area}{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}2b} Census Data: Selected socioeconomic indicators }{1}}
\@writefile{toc}{\contentsline {paragraph}{\numberline {\unhbox \voidb@x \hbox {II-A}2c} Race by Community Area }{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-B}}Generalized Linear Models}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-C}}Hierarchical Models}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-D}}Models Fit}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-D}1}Complete Pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-D}2}No Pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-D}3}Partial pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {II-D}4}Hierarchical}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-E}}Model Comparison}{2}}
\@writefile{toc}{\contentsline {section}{\numberline {III}Results}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {III-A}}Model Parameters}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {III-A}1}No Pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {III-A}2}Complete Pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {III-A}3}Partial Pooling}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {\unhbox \voidb@x \hbox {III-A}4}Hierarchical}{2}}
\@writefile{toc}{\contentsline {section}{\numberline {IV}Conclusions}{2}}
Loading

0 comments on commit e830842

Please sign in to comment.