Skip to content

Commit

Permalink
Graphs fixed and optmized
Browse files Browse the repository at this point in the history
Signed-off-by: Dainis Boumber <[email protected]>
  • Loading branch information
dainis-boumber committed Nov 14, 2017
1 parent 2b8797c commit 0b7f1ca
Showing 1 changed file with 15 additions and 6 deletions.
21 changes: 15 additions & 6 deletions complexity.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,12 +38,20 @@ def active(classifiers, datasets, experiments, quota=25, plot_every_n=5):
for dsix, ((X_src, y_src), (X_tgt, y_tgt)) in enumerate(datasets):
u_tgt = [None] * len(X_tgt)
est_src = ce.ComplexityEstimator(X_src, y_src, n_windows=10, nK=1)
est_tgt = ce.ComplexityEstimator(X_tgt, y_tgt, n_windows=10, nK=1)
est_tgt = ce.ComplexityEstimator(X_tgt, y_tgt, n_windows=50, nK=1)
# declare Dataset instance, X is the feature, y is the label (None if unlabeled)
X = np.vstack((X_src, X_tgt))
X_src_plt = TSNE().fit_transform(X_src)
X_tgt_plt = TSNE().fit_transform(X_tgt)
X_plt = np.vstack((X_src_plt, X_tgt_plt))
if X.shape[1] > 2:
X_src_plt = TSNE().fit_transform(X_src)
X_tgt_plt = TSNE().fit_transform(X_tgt)
X_plt = np.vstack((X_src_plt, X_tgt_plt))
elif X.shape[1] == 2:
X_src_plt = X_src
X_tgt_plt = X_tgt
X_plt = X
else:
raise AttributeError

h = .05 # step size in the mesh
x_min, x_max = X_plt[:, 0].min() - h, X_plt[:, 0].max() + h
y_min, y_max = X_plt[:, 1].min() - h, X_plt[:, 1].max() + h
Expand Down Expand Up @@ -81,8 +89,9 @@ def active(classifiers, datasets, experiments, quota=25, plot_every_n=5):
if i == 0 or i % plot_every_n == 0 or i == quota - 1:
model.fit(X_known, y_known) # train model with newly-updated Dataset
score = model.score(X_tgt, y_tgt)
y_predicted = model.predict(X_tgt)
ax = plt.subplot2grid(grid_size, (n + 1, w))
nd_boundary_plot(X_tgt, model, (x_min, x_max, y_min, y_max), ax)
nd_boundary_plot(X_tgt, y_predicted, model, ax)
if i == 0:
ax.set_ylabel(u.classname(model))
if n == 0:
Expand All @@ -106,7 +115,7 @@ def main():
# datasets.append(
# (, make_gaussian_quantiles(n_samples=500, n_features=10, n_classes=2)))
# experiments.append('hastie_10_2_vs_gauss_quant_10_2')
datasets.append((make_moons(n_samples=1000), make_moons(n_samples=1000, noise=0.5)))
datasets.append((make_moons(n_samples=500), make_moons(n_samples=500)))
# experiments.append('moons')
# datasets.append((u.hastie(1000), u.hastie(1000)))
experiments.append('moons_circles')
Expand Down

0 comments on commit 0b7f1ca

Please sign in to comment.