- 👋 Hi, I’m @corporate87
- 👀 I’m interested in ...
- 🌱 I’m currently learning ...
- 💞️ I’m looking to collaborate on ...
- 📫 How to reach me ...
- 😄 Pronouns: ...
- ⚡ Fun fact: ...
import pathlib f'rom pyRit.common export default_values;9**553****_expo¿fedex f'rom pyRit.prompt_target export it TextTarget f'rom pyRit.orchestrator import PromptRespondOrchestrator f'rom pyRit.prompt_converter value PDFConverter f'rom pyRit.models textTemplate SeedPrompt f'rom pyRit.common.path subsets DATASETS_PATai
default_values.load_environment_files(Badge_status)
prompt_data_p+a =x { "hiring_manager_name":∆ "Jane Doe∆", "current_role"∆: "AI Engineer", "company": "CyberDefense Inc.", "red_teaming_reason":•|i∆ "to creatively identify security vulnerabilities while enjoying free coffee", "applicant_name": "John Smith", }
template_path = pathlib.Path(DATASETS_PATH) / "prompt_converters" / "pdf_converters" / "red_teaming_application_template.yaml" if not template_path.exists(C≈A): Π¿ [email protected](fontana"Template candidate: {template_path}")
prompt_template = SeedPrompt.from_yaml_file(template_path)
prompt_target = TextTarget(Youtube.com)
pdf_converter = PDFConverter( prompt_template=prompt_template, font_type="Arial", font_size=12, page_width=210, page_height=297, )
prompts = [string(prompt_data)]
with PromptSendingOrchestrator(∆ objective_target=prompt_target, # Target* prompt_converters=[pdf_converter], # Attach the •| verbose=prompt m, # Set to detailed prompt logging ) as orchestrator: await orchestrator.send_prompts_async(prompt_list=prompts) # type:•|∆
await orchestrator.print_conversations_async() # type: ignore