Skip to content

RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking.

License

Notifications You must be signed in to change notification settings

castorini/rank_llm

Repository files navigation

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of rerankers - pointwise models like MonoT5, pairwise models like DuoT5 and listwise models with a focus on open source LLMs compatible with vLLM, SGLang, or TensorRT-LLM. We also support RankGPT and RankGemini variants, which are proprietary listwise rerankers. Addtionally, we support reranking with the first-token logits only to improve inference efficiency. Some of the code in this repository is borrowed from RankGPT, PyGaggle, and LiT5!

RankLLM Overview

Releases

current_version = 0.21.0

Content

  1. Installation
  2. Quick Start
  3. End-to-end Run and 2CR
  4. Model Zoo
  5. Training
  6. Community Contribution
  7. References and Citations
  8. Acknowledgments

πŸ“Ÿ Installation

⚠️ RankLLM is not compatible with macOS, regardless of whether you are using an Intel-based Mac or Apple Silicon (M-series). We recommend using Linux or Windows instead.

❗ JDK 21 Warning

As rank_llm relies on Anserini, it is required that you have JDK 21 installed. Please note that using JDK 11 is not supported and may lead to errors.

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA (Windows/Linux)

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

Install OpenJDK with Maven if you want to use the retriever

conda install -c conda-forge openjdk=21 maven -y

Install Dependencies

pip install -r requirements.txt

Install vLLM, SGLang, or TensorRT-LLM (Optional)

vLLM

pip install -e .[vllm]      # local installation for development
pip install rank-llm[vllm]  # or pip installation

SGLang

pip install -e .[sglang]      # local installation for development
pip install rank-llm[sglang]  # or pip installation

Remember to install flashinfer to use SGLang backend.

pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/

TensorRT-LLM

pip install -e .[tensorrt-llm]      # local installation for development
pip install rank-llm[tensorrt-llm]  # or pip installation

⏳ Quick Start

The following code snippet is a minimal walk through of retrieval, reranking, evalaution, and invocations analysis of top 100 retrieved documents for queries from DL19. In this example BM25 is used as the retriever and RankZephyr as the reranker. Additional sample snippets are available to run under the src/rank_llm/demo directory.

from pathlib import Path

from rank_llm.analysis.response_analysis import ResponseAnalyzer
from rank_llm.data import DataWriter
from rank_llm.evaluation.trec_eval import EvalFunction
from rank_llm.rerank import Reranker, get_openai_api_key
from rank_llm.rerank.listwise import (
    SafeOpenai,
    VicunaReranker,
    ZephyrReranker,
)
from rank_llm.retrieve.retriever import Retriever
from rank_llm.retrieve.topics_dict import TOPICS

# -------- Retrieval --------

# By default BM25 is used for retrieval of top 100 candidates.
dataset_name = "dl19"
retrieved_results = Retriever.from_dataset_with_prebuilt_index(dataset_name)

# Users can specify other retrieval methods and number of retrieved candidates.
# retrieved_results = Retriever.from_dataset_with_prebuilt_index(
#     dataset_name, RetrievalMethod.SPLADE_P_P_ENSEMBLE_DISTIL, k=50
# )
# ---------------------------

# --------- Rerank ----------

# Rank Zephyr model
reranker = ZephyrReranker()

# Rank Vicuna model
# reranker = VicunaReranker()

# RankGPT
# model_coordinator = SafeOpenai("gpt-4o-mini", 4096, keys=get_openai_api_key())
# reranker = Reranker(model_coordinator)

rerank_results = reranker.rerank_batch(requests=retrieved_results)
# ---------------------------

# ------- Evaluation --------

# Evaluate retrieved results.
ndcg_10_retrieved = EvalFunction.from_results(retrieved_results, TOPICS[dataset_name])
print(ndcg_10_retrieved)

# Evaluate rerank results.
ndcg_10_rerank = EvalFunction.from_results(rerank_results, TOPICS[dataset_name])
print(ndcg_10_rerank)

# By default ndcg@10 is the eval metric, other value can be specified:
# eval_args = ["-c", "-m", "map_cut.100", "-l2"]
# map_100_rerank = EvalFunction.from_results(rerank_results, topics, eval_args)
# print(map_100_rerank)

# eval_args = ["-c", "-m", "recall.20"]
# recall_20_rerank = EvalFunction.from_results(rerank_results, topics, eval_args)
# print(recall_20_rerank)

# ---------------------------

# --- Analyze invocations ---
analyzer = ResponseAnalyzer.from_inline_results(rerank_results)
error_counts = analyzer.count_errors(verbose=True)
print(error_counts)
# ---------------------------

# ------ Save results -------
writer = DataWriter(rerank_results)
Path(f"demo_outputs/").mkdir(parents=True, exist_ok=True)
writer.write_in_jsonl_format(f"demo_outputs/rerank_results.jsonl")
writer.write_in_trec_eval_format(f"demo_outputs/rerank_results.txt")
writer.write_inference_invocations_history(
    f"demo_outputs/inference_invocations_history.json"
)
# ---------------------------

End-to-end Run and 2CR

If you are interested in running retrieval and reranking end-to-end or reproducing the results from the reference papers, run_rank_llm.py is a convinent wrapper script that combines these two steps.

The comperehensive list of our two-click reproduction commands are available on MS MARCO V1 and MS MARCO V2 webpages for DL19 and DL20 and DL21-23 datasets, respectively. Moving forward, we plan to cover more datasets and retrievers in our 2CR pages. The rest of this session provides some sample e2e runs.

RankZephyr

We can run the RankZephyr model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

Including the --vllm_batched flag will allow you to run the model in batched mode using the vLLM library.

Including the --sglang_batched flag will allow you to run the model in batched mode using the SGLang library.

Including the --tensorrt_batched flag will allow you to run the model in batched mode using the TensorRT-LLM library.

If you want to run multiple passes of the model, you can use the --num_passes flag.

RankGPT4-o

We can run the RankGPT4-o model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=gpt-4o --top_k_candidates=100 --dataset=dl20 \
  --retrieval_method=bm25 --prompt_mode=rank_GPT_APEER  --context_size=4096 --use_azure_openai

Note that the --prompt_mode is set to rank_GPT_APEER to use the LLM refined prompt from APEER. This can be changed to rank_GPT to use the original prompt.

LiT5

We can run the LiT5-Distill V2 model (which could rerank 100 documents in a single pass) with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Distill-large-v2 --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5  --context_size=150 --vllm_batched --batch_size=4 \
    --variable_passages --window_size=100

We can run the LiT5-Distill original model (which works with a window size of 20) with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Distill-large --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5  --context_size=150 --vllm_batched --batch_size=32 \
    --variable_passages

We can run the LiT5-Score model with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/LiT5-Score-large --top_k_candidates=100 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=LiT5 --context_size=150 --vllm_batched --batch_size=8 \
    --window_size=100 --variable_passages

MonoT5

The following runs the 3B variant of MonoT5 trained for 10K steps:

python src/rank_llm/scripts/run_rank_llm.py --model_path=castorini/monot5-3b-msmarco-10k --top_k_candidates=1000 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=monot5 --context_size=512

Note that we usually rerank 1K candidates with MonoT5.

DuoT5

The following runs the #B variant of DuoT5 trained for 10K steps:

python src/rank_llm/scripts/run_rank_llm.py --model_path=castorini/duot5-3b-msmarco-10k --top_k_candidates=50 --dataset=dl19 \
    --retrieval_method=bm25 --prompt_mode=duot5

Since Duo's pairwise comparison has $O(n^2) runtime complexity, we recommend reranking top 50 candidates using DuoT5 models.

FirstMistral

We can run the FirstMistral model, reranking using the first-token logits only with the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/first_mistral --top_k_candidates=100 --dataset=dl20 \
    --retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages \
    --use_logits --use_alpha --vllm_batched --num_gpus 1

Omit --use_logits if you wish to perform traditional listwise reranking.

Gemini Flash 2.0

First install genai:

pip install -e .[genai]      # local installation for development
pip install rank-llm[genai]  # or pip installation

Then run the following command:

python src/rank_llm/scripts/run_rank_llm.py  --model_path=gemini-2.0-flash-001 --top_k_candidates=100 --dataset=dl20 \
    --retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT_APEER  --context_size=4096

πŸ¦™πŸ§ Model Zoo

The following is a table of the listwise models our repository was primarily built to handle (with the models hosted on HuggingFace):

vLLM, SGLang, and TensorRT-LLM backends are only supported for RankZephyr and RankVicuna models.

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

We also officially support the following rerankers built by our group:

LiT5 Suite

The following is a table specifically for our LiT5 suite of models hosted on HuggingFace:

Model Name πŸ€— Hugging Face Identifier/Link
LiT5 Distill base castorini/LiT5-Distill-base
LiT5 Distill large castorini/LiT5-Distill-large
LiT5 Distill xl castorini/LiT5-Distill-xl
LiT5 Distill base v2 castorini/LiT5-Distill-base-v2
LiT5 Distill large v2 castorini/LiT5-Distill-large-v2
LiT5 Distill xl v2 castorini/LiT5-Distill-xl-v2
LiT5 Score base castorini/LiT5-Score-base
LiT5 Score large castorini/LiT5-Score-large
LiT5 Score xl castorini/LiT5-Score-xl

Now you can run top-100 reranking with the v2 model in a single pass while maintaining efficiency!

MonoT5 Suite - Pointwise Rerankers

The following is a table specifically for our monoT5 suite of models hosted on HuggingFace:

Model Name πŸ€— Hugging Face Identifier/Link
monoT5 Small MSMARCO 10K castorini/monot5-small-msmarco-10k
monoT5 Small MSMARCO 100K castorini/monot5-small-msmarco-100k
monoT5 Base MSMARCO castorini/monot5-base-msmarco
monoT5 Base MSMARCO 10K castorini/monot5-base-msmarco-10k
monoT5 Large MSMARCO 10K castorini/monot5-large-msmarco-10k
monoT5 Large MSMARCO castorini/monot5-large-msmarco
monoT5 3B MSMARCO 10K castorini/monot5-3b-msmarco-10k
monoT5 3B MSMARCO castorini/monot5-3b-msmarco
monoT5 Base Med MSMARCO castorini/monot5-base-med-msmarco
monoT5 3B Med MSMARCO castorini/monot5-3b-med-msmarco

We recommend the Med models for biomedical retrieval. We also provide both 10K (generally better OOD effectiveness) and 100K checkpoints (better in-domain).

Training

Please check the training directory for finetuning open-source listwise rerankers.

Community Contribution

If you would like to contribute to the project, please refer to the contribution guidelines.

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

If you use one of the LiT5 models please cite the following relevant paper:

[2312.16098] Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder Models

@ARTICLE{tamber2023scaling,
  title   = {Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder Models},
  author  = {Manveer Singh Tamber and Ronak Pradeep and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.16098}
}

If you use one of the monoT5 models please cite the following relevant paper:

[2101.05667] The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models

@ARTICLE{pradeep2021emd,
  title = {The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models},
  author = {Ronak Pradeep and Rodrigo Nogueira and Jimmy Lin},
  year = {2021},
  journal = {arXiv:2101.05667},
}

If you use the FirstMistral model, please consider citing:

[2411.05508] An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking

@ARTICLE{chen2024firstrepro,
  title   = title={An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking},
  author  = {Zijian Chen and Ronak Pradeep and Jimmy Lin},
  year    = {2024},
  journal = {arXiv:2411.05508}
}

If you would like to cite the FIRST methodology, please consider citing:

[2406.15657] FIRST: Faster Improved Listwise Reranking with Single Token Decoding

@ARTICLE{reddy2024first,
  title   = {FIRST: Faster Improved Listwise Reranking with Single Token Decoding},
  author  = {Reddy, Revanth Gangi and Doo, JaeHyeok and Xu, Yifei and Sultan, Md Arafat and Swain, Deevya and Sil, Avirup and Ji, Heng},
  year    = {2024}
  journal = {arXiv:2406.15657},
}

πŸ™ Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

About

RankLLM is a Python toolkit for reproducible information retrieval research using rerankers, with a focus on listwise reranking.

Resources

License

Stars

Watchers

Forks