Skip to content

avito-tech/bat-autobidding-benchmark

Repository files navigation

BAT: Benchmark for Auto-bidding Task

Overview

This repository contains the benchmark implementation and supplementary materials for our paper "Title" (link). It provides a comprehensive framework for evaluating and comparing different bidding strategies in online advertising auctions.

Key Features

  • Implementation of the following bidding strategies:
    1. ALM
    2. TA-PID
    3. M-PID
    4. Mystique
    5. BROI
  • Simulation environment for ad auctions of two types: FPA (First-Price Auction) and VCG (Vickrey–Clarke–Groves) auction
  • Data analysis and visualization tools
  • Benchmark datasets

Repository Structure

.
├── 📜 LICENSE
├── 📘 README.md
├── 📊 data/                          # Data for VCG and FPA (to be downloaded with dvc)
│   ├── fpa/
│   ├── vcg/
├── 📓 example_notebooks/             # Notebooks with model running examples
│   ├── baseline_bidders.ipynb        # Guideline: how to make experiments with bidders
│   ├── bidder_example.ipynb          # Guideline: how to create new bidder class
│   └── 📊 best_params/
├── 📋 requirements.txt
├── 🛠️ simulator/                      # Main simulator code
│   ├── 💰 model/                      # Bidder models
│   │   ├── bidder.py                  # Parent class for all bidders
│   │   ├── broi_bidder.py           
│   │   ├── linear_bidder.py           # ALM bidder implementation
│   │   ├── m_pid.py                
│   │   ├── mystique.py               
│   │   ├── ta_pid.py
│   │   └── traffic.py
│   ├── 🔄 simulation/                 # Modules for running simulations
│   │   ├── modules.py
│   │   ├── simulate.py
│   │   ├── utils.py
│   │   └── utils_visualization.py
│   └── ✅ validation/                 # Running experiments on all campaigns
│       ├── check_results.py
│       └── metrics.py
└── 📔 useful_notebooks/              # Notebooks with data filtering examples
    ├── filter-fpa.ipynb
    └── filter-vcg.ipynb

Installation

  1. Clone the repository: git clone https://github.com/avito/your-repo-name.git
  2. Install the required packages: pip install -r requirements.txt
  3. Download data: dvc pull

Experiment Results

The Sum Click Ratio (SCR) for the proposed models:

Model SCRVCG SCRFP
ALM 662,466 1,085,836
TA-PID 909,282 1,478,538
M-PID 889,251 1,240,244
Mystique 932,152 1,073,291
BROI 495,169 1,098,184

Contributing

We welcome contributions to improve the benchmark. Please feel free to submit issues or pull requests.

Citation

If you use this benchmark in your research, please cite our paper: to be updated

License

This project is licensed under MIT License. See the LICENSE file for details.

DOI

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published