Skip to content

Yugo19/Map-Action-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MAP-ACTION-MODEL

Map your actions with precision and value!

Developed with the software and tools below.

tqdm Jupyter YAML Jinja PowerShell Python
Docker GitHub%20Actions pandas DVC NumPy FastAPI


Quick Links


Overview

Map Action Model is the codebase for the continous training of Map Acion computer vision model. Developper Doc

Selection_080


Features

Feature Description
βš™οΈ Architecture The project follow a modular architecture with dependencies on libraries like Brotli, Pillow, and FastAPI. It utilizes a mix of Python and related technologies for development.
πŸ”© Code Quality The code quality is maintained with the use of tools such as MkDocs for documentation and potentially other linting tools based on the repository contents.
πŸ“„ Documentation The project includes MKDocs for documentation generation, providing extensive and structured documentation for the codebase.
πŸ”Œ Integrations Key integrations include Brotli, tqdm, and FastAPI among others, suggesting a reliance on external libraries and tools for functionality.
🧩 Modularity The project is structured in a modular way, with dependencies on various libraries like Torch, torchvision, and others, indicating potential code reusability.
πŸ§ͺ Testing Testing frameworks is PyTest
πŸ“¦ Dependencies Key external libraries and dependencies include Brotli, Pillow, FastAPI, Torch, torchvision, and others, indicating a reliance on diverse libraries for functionality.

Repository Structure

└── Map-Action-Model/
    β”œβ”€β”€ .github
    β”‚   └── workflows
    β”‚       β”œβ”€β”€ deploy-docs.yml
    β”‚       β”œβ”€β”€ training-on-gpu.yml
    β”‚       β”œβ”€β”€ unittesting.yml
    β”‚       └── zenml_action.yml
    β”œβ”€β”€ Dockerfile._cuda
    β”œβ”€β”€ Dockerfile.fastapi
    β”œβ”€β”€ LICENCE
    β”œβ”€β”€ _cd.yml
    β”œβ”€β”€ _ci.yml
    β”œβ”€β”€ code
    β”‚   β”œβ”€β”€ .zen
    β”‚   β”‚   └── config.yaml
    β”‚   β”œβ”€β”€ TFLearning.ipynb
    β”‚   β”œβ”€β”€ pipelines
    β”‚   β”‚   └── zenml_pipeline.py
    β”‚   β”œβ”€β”€ steps
    β”‚   β”‚   β”œβ”€β”€ dagshub_utils
    β”‚   β”‚   β”œβ”€β”€ data_preprocess
    β”‚   β”‚   β”œβ”€β”€ model
    β”‚   β”‚   β”œβ”€β”€ model_eval
    β”‚   β”‚   β”œβ”€β”€ plot_metrics
    β”‚   β”‚   └── training_step
    β”‚   β”œβ”€β”€ utilities.ipynb
    β”‚   └── zenml_running.py
    β”œβ”€β”€ data.dvc
    β”œβ”€β”€ data_upload.py
    β”œβ”€β”€ ma_env
    β”‚   β”œβ”€β”€ bin
    β”‚   β”‚   β”œβ”€β”€ Activate.ps1
    β”‚   β”‚   β”œβ”€β”€ activate
    β”‚   β”‚   β”œβ”€β”€ activate.csh
    β”‚   β”‚   β”œβ”€β”€ activate.fish
    β”‚   β”‚   β”œβ”€β”€ pip
    β”‚   β”‚   β”œβ”€β”€ pip3
    β”‚   β”‚   β”œβ”€β”€ pip3.10
    β”‚   β”‚   β”œβ”€β”€ python
    β”‚   β”‚   β”œβ”€β”€ python3
    β”‚   β”‚   └── python3.10
    β”‚   β”œβ”€β”€ lib
    β”‚   β”‚   └── python3.10
    β”‚   └── lib64
    β”‚       └── python3.10
    β”œβ”€β”€ model
    β”‚   └── main.py
    β”œβ”€β”€ requirements.txt
    β”œβ”€β”€ services
    β”‚   └── unittesting
    β”‚       └── Dockerfile
    └── zenml_config
        └── zenml_conf.yml

Modules

code
File Summary
utilities.ipynb Code snippet in code/utilities.ipynb:**Interacts with MLflow and DagsHub to manage experiment tracking within Map-Action-Model repository structure. Handles data sources and enables dataset manipulations.
TFLearning.ipynb Code snippet: Validates user input and updates database accordingly.Architecture: Microservices architecture with a separate service for database operations.Role: Ensures data integrity and security in the system.Critical features: Input validation, database interaction, seamless integration within the microservices ecosystem.
zenml_running.py zenml_running.pyinMap-Action-Modelrepo orchestrates a training pipeline using ZenML. Central to managing ML workflows, integrated withpipelines/zenml_pipeline.py`.
code..zen
File Summary
config.yaml Code in code/.zen/config.yaml sets active stack and workspace IDs for the repository. Facilitates seamless integration with ZenML for workflow management and model pipelines.
code.steps.model
File Summary
m_a_model.py Code snippet in m_a_model.py creates a modified VGG16 model for a specific class count. It adjusts the classifier and uses CrossEntropyLoss. This step enhances the model's adaptability and loss computation in the repository's ML pipeline architecture.
code.steps.plot_metrics
File Summary
plot_metrics.py Code Summary:**plot_metrics.py in Map-Action-Model repo visualizes training and test loss/accuracy curves using Matplotlib. Enhances model evaluation insights for ML pipelines.
code.steps.dagshub_utils
File Summary
dagshub_data_load.py Code snippet in dagshub_data_load.py downloads and organizes data from a CSV file and DagsHub repository for machine learning model training in the Map-Action-Model repository architecture.
code.steps.model_eval
File Summary
evaluation.py Code Summary:**This code snippet performs testing for a PyTorch model, evaluating test data and logging metrics with MLFlow. It optimizes model performance and accuracy for the parent repository's machine learning pipeline.
code.steps.training_step
File Summary
training_step.py Code snippet in training_step.py trains PyTorch model with provided data, logging metrics using MLFlow. Key features include model training loop, metric tracking, and PyTorch model saving.
code.steps.data_preprocess
File Summary
data_loading_pipeline.py Code Summary**:data_loading_pipeline.py in Map-Action-Model creates PyTorch data loaders for training and testing datasets, managing dataset loading and transformation for ML pipelines.
data_transform.py Role:** Code snippet in data_transform.py for image preprocessing in Map-Action-Model repo architecture.Achievement: Generates image transformations for training/testing using torchvision API elegantly, ensuring data consistency.
code.pipelines
File Summary
zenml_pipeline.py Code snippet in zenml_pipeline.py orchestrates a machine learning training pipeline. It manages data processing, model training, and evaluation, culminating in loss curves plotting. This integral component advances ML model development in the repository architecture.

Getting Started

Requirements

Ensure you have the following dependencies installed on your system:

  • Python: Python 3.x

Installation

  1. Clone the Map-Action-Model repository:
git clone https://github.com/223MapAction/Map-Action-Model.git
  1. Change to the project directory:
cd Map-Action-Model
  1. Install the dependencies:
pip install -r requirements.txt

Running Map-Action-Model

Use the following command to run Map-Action-Model:

python main.py

Tests

To execute tests, run:

pytest

🀝 Contributing

Contributions are welcome! Here are several ways you can contribute:

See our Contribution Guidelines for details on how to contribute.


πŸ“„ License

This project is protected under the GNU GPLv3 License.


Code of conduct

See our Code of Conduct for details on expected behavior in our community.


πŸ‘ Acknowledgments

  • List any resources, contributors, inspiration, etc. here.

Return


About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published