Skip to content

Commit

Permalink
Tidy up Bu2019 injection
Browse files Browse the repository at this point in the history
  • Loading branch information
ThibeauWouters committed Dec 19, 2024
1 parent 6ed815f commit ef233e4
Show file tree
Hide file tree
Showing 5 changed files with 68 additions and 54 deletions.
27 changes: 27 additions & 0 deletions examples/KN/bash.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
#!/bin/bash -l
#Set job requirements
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:30:00
#SBATCH --gpus-per-node=1
#SBATCH --cpus-per-gpu=1
#SBATCH --mem-per-gpu=5G
#SBATCH --output=outdir_injection_Bu2019lm/log.out
#SBATCH --job-name=injection_Bu2019lm

now=$(date)
echo "$now"

# Loading modules
# module load 2024
# module load Python/3.10.4-GCCcore-11.3.0
conda activate /home/twouters2/miniconda3/envs/ninjax

# Display GPU name
nvidia-smi --query-gpu=name --format=csv,noheader

# Run the script
python injection_Bu2019lm.py

echo "DONE"
8 changes: 4 additions & 4 deletions examples/KN/injection_Bu2019lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

from fiesta.inference.lightcurve_model import BullaLightcurveModel
from fiesta.inference.likelihood import EMLikelihood
from fiesta.inference.prior import Uniform, Composite
from fiesta.inference.prior import Uniform, CompositePrior
from fiesta.inference.injection import InjectionRecovery
from fiesta.inference.fiesta import Fiesta
from fiesta.utils import load_event_data
Expand Down Expand Up @@ -72,7 +72,7 @@
###########################

model = BullaLightcurveModel(name,
f"../trained_models/{name}/",
f"../../lightcurve_models/KN/{name}/",
filters)

injection_dict = {"KNtheta": 30.0,
Expand Down Expand Up @@ -105,7 +105,7 @@
luminosity_distance
]

prior = Composite(prior_list)
prior = CompositePrior(prior_list)

detection_limit = None
likelihood = EMLikelihood(model,
Expand Down Expand Up @@ -193,7 +193,7 @@
ax.set_ylabel(filter_name)
ax.invert_yaxis()

plt.savefig(f"./figures/test_injection_{name}_data.png", bbox_inches = 'tight')
plt.savefig(os.path.join(outdir, f"test_injection_{name}_data.png"), bbox_inches = 'tight')
plt.close()

# Fixed names: do not include them in the plotting, as will break corner
Expand Down
50 changes: 0 additions & 50 deletions examples/KN/load_data.py

This file was deleted.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
37 changes: 37 additions & 0 deletions examples/KN/outdir_injection_Bu2019lm/log.out
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
Thu Dec 19 16:49:10 CET 2024
NVIDIA A100-SXM4-40GB
GPU found? [cuda(id=0)]
Loaded SurrogateLightcurveModel with filters ['ps1__g', 'ps1__r', 'ps1__i', 'ps1__z', 'ps1__y', '2massj', '2massh', '2massks', 'sdssu']
Creating injection with filters: ['ps1__g', 'ps1__r', 'ps1__i', 'ps1__z', 'ps1__y', '2massj', '2massh', '2massks', 'sdssu']
Converting error budget to dictionary.
NOTE: No detection limit is given. Putting it to infinity.
Loading and preprocessing observations in likelihood . . .
Loading and preprocessing observations in likelihood . . . DONE
INFO: Using MALA as local sampler
Setting up a single Gaussian distribution
No autotune found, use input sampler_params
Training normalizing flow
Tuning global sampler: 0%| | 0/3 [00:00<?, ?it/s]Tuning global sampler: 33%|███▎ | 1/3 [01:13<02:26, 73.07s/it]Tuning global sampler: 67%|██████▋ | 2/3 [01:15<00:31, 31.51s/it]Tuning global sampler: 100%|██████████| 3/3 [01:17<00:00, 18.22s/it]Tuning global sampler: 100%|██████████| 3/3 [01:17<00:00, 25.96s/it]
Compiling MALA body
Starting Production run
Production run: 0%| | 0/3 [00:00<?, ?it/s]Production run: 33%|███▎ | 1/3 [00:00<00:00, 3.28it/s]Production run: 67%|██████▋ | 2/3 [00:00<00:00, 3.29it/s]Production run: 100%|██████████| 3/3 [00:00<00:00, 3.31it/s]Production run: 100%|██████████| 3/3 [00:00<00:00, 3.30it/s]
Saving injection dict
Saving samples to ./outdir_injection_Bu2019lm/results_training.npz
Saving samples to ./outdir_injection_Bu2019lm/results_production.npz
DONE
Total runtime: 1.0 m 27.07 s
DONE

JOB STATISTICS
==============
Job ID: 9118840
Cluster: snellius
User/Group: twouters2/twouters2
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 18
CPU Utilized: 00:01:44
CPU Efficiency: 5.56% of 00:31:12 core-walltime
Job Wall-clock time: 00:01:44
Memory Utilized: 1.40 GB
Memory Efficiency: 27.96% of 5.00 GB
Expand Down

0 comments on commit ef233e4

Please sign in to comment.