Skip to content

SulRash/huggingface-text-data-analyzer

Repository files navigation

Huggingface Text Data Analyzer

Repository Image

A comprehensive tool for analyzing text datasets from HuggingFace's datasets library. This tool provides both basic text statistics and advanced NLP analysis capabilities with optimized performance for large datasets.

Analysis Types

The tool supports two types of analysis that can be run independently or together:

Basic Analysis (Default)

  • Average text length per field
  • Word distribution analysis
  • Junk text detection (HTML tags, special characters)
  • Tokenizer-based analysis (when tokenizer is specified)
  • Token length statistics with batch processing

Advanced Analysis (Optional)

  • Part-of-Speech (POS) tagging
  • Named Entity Recognition (NER)
  • Language detection using XLM-RoBERTa
  • Sentiment analysis using distilbert-sst-2-english

You can control which analyses to run using these flags:

  • --skip-basic: Skip basic analysis (must be used with --advanced)
  • --advanced: Enable advanced analysis
  • --use-pos: Enable POS tagging
  • --use-ner: Enable NER
  • --use-lang: Enable language detection
  • --use-sentiment: Enable sentiment analysis

Installation

From PyPI

pip install huggingface-text-data-analyzer

From Source

  1. Clone the repository:
git clone https://github.com/yourusername/huggingface-text-data-analyzer.git
cd huggingface-text-data-analyzer
  1. Install in development mode:
pip install -e .
  1. Install spaCy's English model (if using advanced analysis):
python -m spacy download en_core_web_sm

Usage

The tool is available as a command-line application after installation. You can run it using the analyze-dataset command:

Basic usage:

analyze-dataset "dataset_name" --split "train" --output-dir "results"

With tokenizer analysis:

analyze-dataset "dataset_name" --tokenizer "bert-base-uncased"

Analyze specific fields with chat template:

analyze-dataset "dataset_name" \
    --fields instruction response \
    --chat-field response \
    --tokenizer "meta-llama/Llama-2-7b-chat-hf"

Run only advanced analysis:

analyze-dataset "dataset_name" --skip-basic --advanced --use-pos --use-lang

Run both analyses:

analyze-dataset "dataset_name" --advanced --use-sentiment

Run basic analysis only (default):

analyze-dataset "dataset_name"

Full analysis with all features:

analyze-dataset "dataset_name" \
    --advanced \
    --use-pos \
    --use-ner \
    --use-lang \
    --use-sentiment \
    --tokenizer "bert-base-uncased" \
    --output-dir "results" \
    --fields instruction response \
    --batch-size 64

Command Line Arguments

  • dataset_name: Name of the dataset on HuggingFace (required)
  • --split: Dataset split to analyze (default: "train")
  • --output-dir: Directory to save analysis results (default: "analysis_results")
  • --tokenizer: HuggingFace tokenizer to use (optional)
  • --cache-tokenized: Cache tokenized texts (default: True)
  • --batch-size: Batch size for tokenization (default: 32)
  • --fields: Specific fields to analyze (optional, analyzes all text fields if not specified)
  • --chat-field: Field to apply chat template to (optional)
  • --advanced: Run advanced analysis with models
  • --use-pos: Include POS tagging analysis
  • --use-ner: Include NER analysis
  • --use-lang: Include language detection
  • --use-sentiment: Include sentiment analysis

Python API

You can also use the tool programmatically in your Python code:

from huggingface_text_data_analyzer import BaseAnalyzer, AdvancedAnalyzer

# Basic analysis
analyzer = BaseAnalyzer(
    dataset_name="your_dataset",
    split="train",
    tokenizer="bert-base-uncased"
)
results = analyzer.analyze()

# Advanced analysis
advanced_analyzer = AdvancedAnalyzer(
    dataset_name="your_dataset",
    split="train",
    use_pos=True,
    use_ner=True
)
advanced_results = advanced_analyzer.analyze_advanced()

Project Structure

huggingface_text_data_analyzer/
├── src/
│   ├── base_analyzer.py      # Basic text analysis functionality
│   ├── advanced_analyzer.py  # Model-based advanced analysis
│   ├── report_generator.py   # Markdown report generation
│   └── utils.py             # Utility functions and argument parsing
├── cli.py                   # Command-line interface
└── __init__.py             # Package initialization

Output

The tool generates markdown reports in the specified output directory:

  • basic_stats.md: Contains basic text statistics
  • word_distribution.md: Word frequency analysis
  • advanced_stats.md: Results from model-based analysis (if enabled)

Caching and Results Management

The tool implements a two-level caching system to optimize performance and save time:

Token Cache

  • Tokenized texts are cached to avoid re-tokenization
  • Cache is stored in ~/.cache/huggingface-text-data-analyzer/
  • Clear with --clear-cache flag

Analysis Results Cache

  • Complete analysis results are cached per dataset/split
  • Basic and advanced analysis results are cached separately
  • When running analysis:
    • Tool checks for existing results
    • Prompts user before using cached results
    • Saves intermediate results after basic analysis
    • Prompts before overwriting existing results

Cache Management Examples

Use cached results if available:

analyze-dataset "dataset_name"  # Will prompt if cache exists

Force fresh analysis:

analyze-dataset "dataset_name" --clear-cache

Add advanced analysis to existing basic analysis:

analyze-dataset "dataset_name" --advanced  # Will reuse basic results if available

Cache Location

  • Token cache: ~/.cache/huggingface-text-data-analyzer/
  • Analysis results: ~/.cache/huggingface-text-data-analyzer/analysis_results/

Performance and Accuracy Considerations

Batch Sizes and Memory Usage

The tool uses two different batch sizes for processing:

  1. Basic Batch Size (--basic-batch-size, default: 1):

    • Used for tokenization and basic text analysis
    • Higher values improve processing speed but may affect token count accuracy
    • Token counting in larger batches can be affected by padding, truncation, and memory constraints
    • If exact token counts are crucial, use smaller batch sizes (8-16)
  2. Advanced Batch Size (--advanced-batch-size, default: 16):

    • Used for transformer models (language detection, sentiment analysis)
    • Adjust based on your GPU memory
    • Larger batches improve processing speed but require more GPU memory
    • CPU-only users might want to use smaller batches (4-8)

GPU Support

The tool automatically detects and uses available CUDA GPUs for:

  • Language detection model
  • Sentiment analysis model
  • Tokenizer operations

SpaCy operations (POS tagging, NER) remain CPU-bound for better compatibility.

Examples

For exact token counting:

analyze-dataset "dataset_name" --basic-batch-size 8

For faster processing with GPU:

analyze-dataset "dataset_name" --advanced-batch-size 32 --basic-batch-size 64

For memory-constrained environments:

analyze-dataset "dataset_name" --advanced-batch-size 4 --basic-batch-size 16

Performance Features

  • Batch processing for tokenization
  • Progress bars for long-running operations
  • Tokenizer parallelism enabled
  • Caching support for tokenized texts
  • Memory-efficient processing of large datasets
  • Optimized batch sizes for better performance

Requirements

  • Python 3.8+
  • transformers
  • datasets
  • spacy
  • rich
  • torch
  • pandas
  • numpy
  • scikit-learn (for advanced features)
  • tqdm

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the Apache License 2.0