-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #69 from SkywardAI/fix/load_model
fix download model issue
- Loading branch information
Showing
4 changed files
with
171 additions
and
21 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# coding=utf-8 | ||
# Copyright [2024] [SkywardAI] | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
from kimchima.utils import Downloader | ||
from kimchima.pipelines import PipelinesFactory | ||
from kimchima.pkg import ModelFactory | ||
from kimchima.pkg import TokenizerFactory | ||
|
||
|
||
class TestDownloader(unittest.TestCase): | ||
|
||
# prepare test data | ||
def setUp(self): | ||
self.model_name="gpt2" | ||
self.folder_name="gpt2" | ||
self.model_name_auto="sentence-transformers/all-MiniLM-L6-v2" | ||
self.folder_name_auto="encoder" | ||
|
||
@unittest.skip("skip test_model_downloader") | ||
def test_model_downloader(self): | ||
""" | ||
Test model_downloader method | ||
""" | ||
Downloader.model_downloader(model_name=self.model_name, folder_name=self.folder_name) | ||
|
||
# load it from the folder | ||
pipe=PipelinesFactory.customized_pipe(model=self.folder_name, device_map='auto') | ||
|
||
# pipe is not None | ||
self.assertIsNotNone(pipe) | ||
self.assertEqual(pipe.model.name_or_path, self.folder_name) | ||
|
||
|
||
# @unittest.skip("skip test_auto_downloader") | ||
def test_auto_downloader(self): | ||
""" | ||
Test auto_downloader method | ||
""" | ||
Downloader.auto_downloader(model_name=self.model_name_auto, folder_name=self.folder_name_auto) | ||
Downloader.auto_token_downloader(model_name=self.model_name_auto, folder_name=self.folder_name_auto) | ||
|
||
# load it from the folder | ||
model=ModelFactory.auto_model(pretrained_model_name_or_path=self.folder_name_auto) | ||
|
||
|
||
# load it from the local dolder | ||
tokenizer=TokenizerFactory.auto_tokenizer(pretrained_model_name_or_path=self.folder_name_auto) | ||
|
||
self.assertIsNotNone(model) | ||
self.assertEqual(model.name_or_path, self.folder_name_auto) | ||
|
||
self.assertIsNotNone(tokenizer) | ||
|
||
promt="test" | ||
input=tokenizer(promt, return_tensors="pt") | ||
output=model(**input) | ||
|
||
self.assertIsNotNone(output[0]) | ||
|
||
@unittest.skip("skip test_casual_downloader") | ||
def test_casual_downloader(self): | ||
""" | ||
Test casual_downloader method | ||
""" | ||
Downloader.casual_downloader(model_name=self.model_name_auto, folder_name=self.folder_name_auto) | ||
Downloader.auto_token_downloader(model_name=self.model_name_auto, folder_name=self.folder_name_auto) | ||
|
||
model=ModelFactory.auto_model_for_causal_lm(pretrained_model_name_or_path=self.folder_name_auto) | ||
tokenizer=TokenizerFactory.auto_tokenizer(pretrained_model_name_or_path=self.folder_name_auto) | ||
|
||
self.assertIsNotNone(model) | ||
self.assertEqual(model.name_or_path, self.folder_name_auto) | ||
|
||
self.assertIsNotNone(tokenizer) | ||
|
||
prompt="test" | ||
input=tokenizer(prompt, return_tensors="pt") | ||
output=model(**input) | ||
self.assertIsNotNone(output[0]) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters