Skip to content

SRA-VJTI/Intelligent-Systems

Repository files navigation

Intelligent-Systems

This repository is designed as a comprehensive, step-by-step guide to mastering AI and Machine Learning, covering essential prerequisites, mathematical foundations, core algorithms, and advanced concepts. Each section is divided into topic-specific markdown files, making it easy to navigate and focus on individual skills.

Structure

.
├── 01_PreRequisites
│   ├── 01_Python
│   │   ├── 1_python_basics.ipynb
│   │   ├── 2_operators_and_conrol_statements.ipynb
│   │   ├── 3_lists.ipynb
│   │   ├── 4_dictionary.ipynb
│   │   ├── 5_sets_and_tuples.ipynb
│   │   ├── 6_functions.ipynb
│   │   ├── 7_classes_and_objects.ipynb
│   │   ├── 8_advance.ipynb
│   │   ├── README.MD
│   │   └── images
│   ├── 02_NumPy
│   │   ├── 01_basic.ipynb
│   │   ├── 02_creation.ipynb
│   │   ├── 03_operations.ipynb
│   │   ├── 04_indexingAndSlicing.ipynb
│   │   ├── 05_ReshapingSplittingAndStacking.ipynb
│   │   ├── 06_broadcasting.ipynb
│   │   ├── 07_advance.ipynb
│   │   ├── README.md
│   │   └── images
│   ├── 03_Pandas
│   │   ├── 01_basics.ipynb
│   │   ├── 02_dataStructures.ipynb
│   │   ├── 03_view.ipynb
│   │   ├── 04_indexingAndSlicing.ipynb
│   │   ├── 05_filteringAndSorting.ipynb
│   │   ├── 06_dataCleaning.ipynb
│   │   ├── 07_advance.ipynb
│   │   ├── README.md
│   │   ├── images
│   │   ├── pokemon_data.csv
│   │   └── pokemon_data.txt
│   ├── 04_Matplotlib
│   │   ├── 01_basics.ipynb
│   │   ├── 02_LineGraph.ipynb
│   │   ├── 03_barChartAndHistogram.ipynb
│   │   ├── 04_pieChart.ipynb
│   │   ├── 05_boxAndWhiskersChart.ipynb
│   │   ├── README.md
│   │   ├── fifa_data.csv
│   │   ├── gas_prices.csv
│   │   └── stocks_prices.csv
│   └── README.md
├── 02_Maths
│   ├── 01_linearAlgebra.md
│   ├── 02_probability.md
│   ├── 03_statistics.md
│   ├── 04_derivatives.md
│   ├── Images
│   └── README.md
├── 03_AI
│   ├── 01_ButwhatIsAI.md
│   ├── 02_search.md
│   ├── 03_problemOfLocalOptima.md
│   ├── 04_gamePlaying.pdf
│   ├── Advance
│   │   ├── Astar.pdf
│   │   ├── Astar_implementation
│   │   ├── planning.pdf
│   │   └── ruleBasedSystems.pdf
│   ├── Assignments
│   │   ├── Assignment1
│   │   ├── Assignment2
│   │   ├── Assignment3
│   │   └── Assignment4
│   ├── Extra_Learning
│   │   └── randomizedMethods.pdf
│   ├── README.md
│   └── images
├── 04_Statistical_ML
│   ├── 01_linear_regression.md
│   ├── 02_logistic_regression.md
│   ├── 03_perceptron.md
│   ├── 04_knn.md
│   ├── 05_naive_bayes.md
│   ├── 06_decision_tree.md
│   ├── 07_random_forest.md
│   ├── 08_svm.md
│   ├── 09_gaussian_process.md
│   ├── 10_SOMs.md
│   ├── 11_pca.md
│   ├── 12_gradient_boosting.md
│   └── README.md
├── 05_Deep_Learning
│   ├── 01_neural_networks.md
│   ├── 02_hyperparameter_tuning.md
│   ├── 03_mnist.md
│   ├── 04_cnn.md
│   ├── 05_lstms.md
│   ├── 06_LLMs.md
│   ├── Assets
│   │   └── images
│   ├── README.md
│   ├── codes
│   │   ├── ResNet-34
│   │   ├── images
│   │   ├── loopsVsVectorization.ipynb
│   │   └── mnist.ipynb
│   └── images
├── 06_Natural_Language_Processing
│   └── README.md
├── 07_Generative_AI
│   └── README.md
├── 08_Advance_Models
│   └── README.md
├── 09_Agents
│   └── README.md
└── README.md

Content Pushed

├── 01_PreRequisites
│   ├── 01_Python
│   ├── 02_NumPy
│   ├── 03_Pandas
│   ├── 04_Matplotlib
│   └── README.md
├── 02_Maths
│   ├── 01_linearAlgebra.md
├── 03_AI
│   ├── 01_ButwhatIsAI.md
│   ├── 02_search.md
│   ├── 03_problemOfLocalOptima.md
│   ├── 04_gamePlaying.pdf
│   ├── Advance
│   ├── Assignments
│   ├── Extra_Learning
│   ├── README.md
│   └── images
├── 05_Deep_Learning
│   ├── 01_nn.md
│   ├── 06_LLMs.md

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •