-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
100 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
import pandas as pd | ||
import streamlit as st | ||
import requests | ||
|
||
|
||
|
||
def request_prediction(model_uri, data): | ||
headers = {"Content-Type": "application/json"} | ||
st.write(data) | ||
#data_json = {'data': data} | ||
data_json = data | ||
|
||
#data_json = {'dataframe_split': data.to_dict(orient='records')} | ||
st.write(data_json) | ||
|
||
response = requests.request( | ||
method='POST', headers=headers, url=model_uri, json=data_json) | ||
|
||
if response.status_code != 200: | ||
raise Exception( | ||
"Request failed with status {}, {}".format(response.status_code, response.text)) | ||
|
||
return response.json() | ||
|
||
|
||
def main(): | ||
MLFLOW_URI = 'http://127.0.0.1:8099/invocations' | ||
CORTEX_URI = 'http://0.0.0.0:8890/' | ||
RAY_SERVE_URI = 'http://127.0.0.1:8000/regressor' | ||
|
||
api_choice = st.sidebar.selectbox( | ||
'Quelle API souhaitez vous utiliser', | ||
['MLflow', 'Cortex', 'Ray Serve']) | ||
|
||
st.title('Median House Price Prediction') | ||
|
||
revenu_med = st.number_input('Revenu médian dans le secteur (en 10K de dollars)', | ||
min_value=0., value=3.87, step=1.) | ||
|
||
age_med = st.number_input('Âge médian des maisons dans le secteur', | ||
min_value=0., value=28., step=1.) | ||
|
||
nb_piece_med = st.number_input('Nombre moyen de pièces', | ||
min_value=0., value=5., step=1.) | ||
|
||
nb_chambre_moy = st.number_input('Nombre moyen de chambres', | ||
min_value=0., value=1., step=1.) | ||
|
||
taille_pop = st.number_input('Taille de la population dans le secteur', | ||
min_value=0, value=1425, step=100) | ||
|
||
occupation_moy = st.number_input('Occupation moyenne de la maison (en nombre d\'habitants)', | ||
min_value=0., value=3., step=1.) | ||
|
||
latitude = st.number_input('Latitude du secteur', | ||
value=35., step=1.) | ||
|
||
longitude = st.number_input('Longitude du secteur', | ||
value=-119., step=1.) | ||
|
||
predict_btn = st.button('Prédire') | ||
if predict_btn: | ||
data = pd.DataFrame([[revenu_med, age_med, nb_piece_med, nb_chambre_moy, | ||
taille_pop, occupation_moy, latitude, longitude]])#.to_json(orient='records') | ||
|
||
data = {"dataframe_records": [[revenu_med, age_med, nb_piece_med, nb_chambre_moy, | ||
taille_pop, occupation_moy, latitude, longitude]]} | ||
|
||
data = { "inputs":[[0, 0, 1, 1, 63000.0, 310500.0, 15232.5, 310500.0, 0.026392, 16263, -214.0, -8930.0, -573, 0.0, 1, 1, 0, 1, 1, 0, 2.0, 2, 2, 11, 0, 0, 0, 0, 1, 1, 0.0, 0.0765011930557638, 0.0005272652387098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, True, False, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, True, False, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]]} | ||
|
||
|
||
pred = None | ||
|
||
if api_choice == 'MLflow': | ||
st.write(MLFLOW_URI) | ||
st.write(data) | ||
pred = request_prediction(MLFLOW_URI, data)#[0] * 100000 | ||
elif api_choice == 'Cortex': | ||
pred = request_prediction(CORTEX_URI, data)[0] * 100000 | ||
elif api_choice == 'Ray Serve': | ||
pred = request_prediction(RAY_SERVE_URI, data)[0] * 100000 | ||
st.write( | ||
'Le prix médian d\'une habitation est de {:.2f}'.format(pred["predictions"][0])) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters