Skip to content

Commit

Permalink
release version 0.1.0
Browse files Browse the repository at this point in the history
  • Loading branch information
Jiangyan-Zhao committed Dec 27, 2023
1 parent 2d97634 commit e3421ab
Show file tree
Hide file tree
Showing 50 changed files with 264 additions and 3,658 deletions.
10 changes: 5 additions & 5 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,22 +1,22 @@
Package: EPBO
Title: Bayesian Optimization via Exact Penalty
Version: 0.0.11
Date: 2023-11-20
Version: 0.1.0
Date: 2023-12-14
Authors@R:
person(given = "Jiangyan",
family = "Zhao",
email = "[email protected]",
role = c("aut", "cre"))
Description: Wrapper routines for blackbox optimization under mixed equality and inequality
constraints via an exact penalty.
Description: Wrapper routines for blackbox optimization under mixed (equality and/or inequality)
constraints via exact penalty.
License: AGPL (>= 3)
URL: https://github.com/Jiangyan-Zhao/EPBO
BugReports: https://github.com/Jiangyan-Zhao/EPBO/issues
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
Imports: laGP, tgp, DiceKriging, matrixStats, mvtnorm
Imports: laGP, tgp
Depends: R (>= 2.14)
Suggests:
stats,
Expand Down
28 changes: 4 additions & 24 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,38 +1,18 @@
# Generated by roxygen2: do not edit by hand

export(AF_AE)
export(AF_ConVar)
export(AF_EY)
export(AF_EY_Kernel)
export(AF_LCB)
export(AF_OOSS)
export(AF_ScaledEI)
export(AF_ScaledEI_Kernel)
export(AF_ScaledEI_MC)
export(AF_TS)
export(AF_UEI)
export(AF_UEI_Kernel)
export(AF_UEI_MC)
export(AF_VEI)
export(bilog)
export(normalize)
export(optim.AE)
export(optim.BM)
export(optim.EP)
export(optim.EP.MC)
export(optim.EP.kernel)
export(optim.EP4HD)
export(unbilog)
export(unnormalize)
import(DiceKriging)
import(laGP)
import(matrixStats)
import(tgp)
importFrom(graphics,image)
importFrom(graphics,par)
importFrom(graphics,points)
importFrom(stats,dnorm)
importFrom(stats,median)
importFrom(stats,optim)
importFrom(stats,pnorm)
importFrom(stats,quantile)
importFrom(stats,rnorm)
importFrom(stats,runif)
importFrom(stats,sd)
importFrom(utils,tail)
22 changes: 10 additions & 12 deletions R/AE.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
#' \item{C }{ \code{matrix} giving the value of the constraint function for the input under consideration at each trial}
#' \item{X }{ \code{matrix} giving the input values at which the blackbox function was evaluated }
#'
#' @seealso \code{\link[laGP]{optim.auglag}}, \code{\link[laGP]{optim.efi}}, \code{\link[EPBO]{optim.BM}}, \code{\link[EPBO]{optim.EP}}
#' @seealso \code{\link[laGP]{optim.auglag}}, \code{\link[laGP]{optim.efi}}, \code{\link[EPBO]{optim.BM}}, \code{\link[EPBO]{optim.EP}}
#'
#' @author Jiangyan Zhao \email{[email protected]}
#'
Expand All @@ -68,10 +68,9 @@
#'
#' @examples
#' # search space
#' B = rbind(c(-2.25, 2.5), c(-2.25, 1.75))
#' B = rbind(c(-2.25, 2.5), c(-2.5, 1.75))
#' # Objective and constraint function for use
#' MTP = function(x, B=rbind(c(-2.25, 2.5), c(-2.5, 1.75))){
#' x = pmin(pmax(B[,1], x), B[,2])
#' MTP = function(x){
#' f = -(cos((x[1]-0.1)*x[2]))^2 - x[1]*sin(3*x[1]+x[2])
#' t = atan2(x[1], x[2])
#' c = x[1]^2 + x[2]^2 -((2*cos(t)-1/2*cos(2*t)-1/4*cos(3*t)-1/8*cos(4*t))^2) - ((2*sin(t))^2)
Expand All @@ -84,14 +83,13 @@
#' AE$xbest


optim.AE = function(blackbox, B,
start=10, end=100,
Xstart=NULL, urate=10,
ncandf=function(k) { k },
alpha1=1, alpha2=5, omega=2/3,
dg.start=c(0.1,1e-6), ab=c(3/2,8),
dlim=sqrt(ncol(B))*c(1/100,10),
verb=2, ...){
optim.AE = function(
blackbox, B, start=10, end=100,
Xstart=NULL, urate=10, ncandf=function(k) { k },
alpha1=1, alpha2=5, omega=2/3,
dg.start=c(0.1,1e-6), ab=c(3/2,8), dlim=sqrt(ncol(B))*c(1/100,10),
verb=2, ...)
{
## check start
if(start >= end) stop("must have start < end")
## get initial design
Expand Down
43 changes: 15 additions & 28 deletions R/AF_AE.R
Original file line number Diff line number Diff line change
@@ -1,26 +1,21 @@
#' @title Asymmetric Entropy
#' @title Asymmetric entropy acquisition function
#'
#' @description Asymmetric Entropy
#' @description The asymmetric entropy (AE) acquisition function of the AE method
#'
#' @param x description
#' @param x a vector containing a single candidate point; or a \code{matrix} with
#' multiple candidate points
#' @param fgpi the GP surrogate model of the objective function
#' @param fnorm the maximum of the objective
#' @param Cgpi the GP surrogate models of the constraints
#' @param Cnorm the maxima of the constraints
#' @param fmin the best objective value obtained so far
#' @param alpha1 a specified weight for the EI part
#' @param alpha2 a specified weight for the AE part
#' @param omega a mode location parameter
#'
#' @param fgpi description
#' @returns The AE value(s) at \code{x}.
#'
#' @param fnorm description
#'
#' @param Cgpi description
#'
#' @param Cnorm description
#'
#' @param fmin description
#'
#' @param alpha1 description
#'
#' @param alpha2 description
#'
#' @param omega description
#'
#' @returns AF
#' @seealso \code{\link[EPBO]{AF_ScaledEI}}, \code{\link[EPBO]{AF_EY}}, \code{\link[EPBO]{AF_OOSS}}
#'
#' @author Jiangyan Zhao \email{[email protected]}
#'
Expand All @@ -31,15 +26,7 @@
#' @importFrom stats dnorm
#' @importFrom stats pnorm
#' @importFrom stats quantile
#'
#'
#'
#' @export
#'
#' @examples
#' B = rbind(c(0, 1), c(0, 1))
#'
#'


AF_AE = function(x, fgpi, fnorm, Cgpi, Cnorm, fmin,
alpha1=1, alpha2=5, omega=2/3)
Expand Down
66 changes: 0 additions & 66 deletions R/AF_ConVar.R

This file was deleted.

36 changes: 12 additions & 24 deletions R/AF_EY.R
Original file line number Diff line number Diff line change
@@ -1,40 +1,28 @@
#' @title Predictive mean acquisition function
#'
#' @description Predictive mean
#'
#' @param x description
#'
#' @param fgpi description
#'
#' @param fmean description
#'
#' @param fsd description
#'
#' @param Cgpi description
#'
#' @param rho description
#'
#' @description The predictive mean acquisition function of the EPBO method
#'
#' @param x a vector containing a single candidate point; or a \code{matrix} with
#' multiple candidate points
#' @param fgpi the GP surrogate model of the objective function
#' @param fmean the mean of the objective value
#' @param fsd the standard deviation of the objective value
#' @param Cgpi the GP surrogate models of the constraints
#' @param rho the penalty parameters
#' @param equal an optional vector containing zeros and ones, whose length equals the number of
#' constraints, specifying which should be treated as equality constraints (\code{1}) and
#' which as inequality (\code{0})
#'
#' @returns The Predictive Mean at \code{x}.
#'
#' @returns AF
#' @seealso \code{\link[EPBO]{AF_ScaledEI}}, \code{\link[EPBO]{AF_OOSS}}, \code{\link[EPBO]{AF_AE}}
#'
#' @author Jiangyan Zhao \email{[email protected]}
#'
#'
#' @import laGP
#' @importFrom stats dnorm
#' @importFrom stats pnorm
#'
#'
#' @export
#'
#' @examples
#' B = rbind(c(0, 1), c(0, 1))
#'
#'


AF_EY = function(x, fgpi, fmean, fsd, Cgpi, rho, equal)
{
Expand Down
59 changes: 0 additions & 59 deletions R/AF_EY_Kernel.R

This file was deleted.

Loading

0 comments on commit e3421ab

Please sign in to comment.