-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvideo.py
136 lines (109 loc) · 4.27 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import datetime
import random
import time
from pathlib import Path
import torch
import torchvision.transforms as standard_transforms
import numpy as np
from PIL import Image
import cv2
from dataset import build_dataset
from engine import *
from models import build_model
import os
import warnings
from google.colab.patches import cv2_imshow
warnings.filterwarnings('ignore')
def get_args_parser():
parser = argparse.ArgumentParser('Set parameters for P2PNet evaluation', add_help=False)
# * Backbone
parser.add_argument('--backbone', default='vgg16_bn', type=str,
help="name of the convolutional backbone to use")
parser.add_argument('--threshold', default=0.5,type=float)
parser.add_argument('--row', default=2, type=int,
help="row number of anchor points")
parser.add_argument('--line', default=2, type=int,
help="line number of anchor points")
parser.add_argument('--output_dir', default='',
help='path where to save')
parser.add_argument('--weight_path', default='',
help='path where the trained weights saved')
parser.add_argument('--video_path', default='',
help='path where the images loaded')
parser.add_argument('--gpu_id', default=0, type=int, help='the gpu used for evaluation')
return parser
def main(args, debug=False):
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(args.gpu_id)
print(args)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# get the P2PNet
model = build_model(args)
# move to GPU
model.to(device)
# load trained model
if args.weight_path is not None:
checkpoint = torch.load(args.weight_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
# convert to eval mode
model.eval()
# create the pre-processing transform
transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
video_path = args.video_path
vidcap = cv2.VideoCapture(video_path)
sec = 0
frameRate = 0.05 #//it will capture image in each 0.1 second
count=1
flag=True
c=1
while flag:
count = count + 1
sec = sec + frameRate
sec = round(sec, 2)
vidcap.set(cv2.CAP_PROP_POS_MSEC,sec*1000)
hasFrames,image = vidcap.read()
if hasFrames==True:
img_raw=np.copy(image)
else:
out.release()
cv2.destroyAllWindows()
vidcap.release()
break
img_raw = Image.fromarray(img_raw)
width, height = img_raw.size
if width>2000 or height>2000:
r=width/height
width=2000
height=int(2000/r)
new_width = width // 128 * 128
new_height = height // 128 * 128
img_raw = img_raw.resize((new_width, new_height), Image.ANTIALIAS)
if c==1:
size=img_raw.size
out = cv2.VideoWriter(args.output_dir,cv2.VideoWriter_fourcc(*'DIVX'), 20, size)
c+=1
# pre-proccessing
img = transform(img_raw)
samples = torch.Tensor(img).unsqueeze(0)
samples = samples.to(device)
# run inference
outputs = model(samples)
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
threshold = args.threshold
# filter the predictions
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
predict_cnt = int((outputs_scores > threshold).sum())
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
size=2
img_to_draw = cv2.cvtColor(np.array(img_raw), cv2.COLOR_RGB2BGR)
for p in points:
img_to_draw = cv2.circle(img_to_draw, (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
out.write(img_to_draw)
if __name__ == '__main__':
parser = argparse.ArgumentParser('P2PNet evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)